350 rub
Journal Science Intensive Technologies №8 for 2021 г.
Article in number:
Detection of distortions in digital images by means of semi-fragile watermarks
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202108-08
UDC: 004.932
Authors:

M.N. Isaeva1, A.V.Afanasyeva2, A.A. Ovchinnikov3

1–3 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

Abstract:

The problem of copyright protection is very relevant in modern society, especially for digital images. There are can use digital watermarks to identify authorship or track unauthorized copies of multimedia files. Recently, the use of filters on images that lead to distortion and can destroy the built-in DW has become popular. There are many approaches to detecting these distortions, but no one has tried to distinguish between the detected types of distortions and classify them.

Purposethere are explore the possibility of classifying attack types in different ways and suggest an approach to determining distortion types on images using semi-fragile marks (DW).

Two approaches have been investigated and proposed to detect distortions in digital images using semi-fragile marks using as a parameter an error vector between the original and the distorted DWs. Both approaches showed the possibility of detecting certain types of distortion with a sufficiently high probability. Experiments have been conducted showing the possibility of determining the type of transformation on the image.

A feature of this approach is the fact that the original image is not used to determine the type of attack, conclusions are made only on the basis of the embedded DW.

Pages: 50-60
For citation

Isaeva M.N., Afanasyeva A.V., Ovchinnikov A.A. Detection of distortions in digital images by means of semi-fragile watermarks. Science Intensive Technologies. 2021. V. 22. № 8. P. 50−60. DOI: https://doi.org/10.18127/j19998465-202108-08 (in Russian)

References
  1. Gribunin V.G., Okov I.N., Turincev I.V. Cifrovaya steganografiya. M.: SOLON-PRESS. 2009. 272 s. (in Russian).
  2. Konahovich G.F., Puzyrenko A.YU. Komp'yuternaya steganografiya: Teoriya i praktika. M.: MK-Press. 2006. 283 s. (in Russian).
  3. Cox I.J., Miller M., Bloom J., Fridrich J. Digital watermarking and steganography. San Francisco: Morgan Kaufmann Publishing, 2008. 624 p.
  4. Bahrushin A.P., Bahrushina G.I. Klassifikaciya algoritmov cifrovogo markirovaniya izobrazhenij. Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU». 2017. T. 8. № 2. S. 39–42 (in Russian).
  5. Egorova A.A., Fedoseev V.A. Klassifikaciya i sravnitel'noe issledovanie sistem autentifikacii JPEG-izobrazhenij, osnovannyh na vstraivanii poluhrupkih vodyanyh znakov. Komp'yuternaya optika. 2019. T. 43. № 3. S. 419–433 (in Russian)..
  6. Lin E.T., Podilchuk C.I., Delp E.J. Detection of image alterations using semifragile watermarks. Security and Watermarking of Multimedia Contents II. 2000. V. 3971. P. 152–164.
  7. Sivasubramanian N., Konganathan G. A novel semi fragile watermarking technique for tamper detection and recovery using IWT and DCT. Computing. 2020. S. 1–20.
  8. Miri A., Faez K. An image steganography method based on integer wavelet transform. Multimedia Tools and Applications. 2018. T. 77. № 11. S. 13133–13144.
  9. Khaldi A. A lossless blind image data hiding scheme for semi-fragile image watermark. International Journal of Computational Vision and Robotics. 2020. T. 10. № 5. S. 373–384.
  10. Fedoseev V.A. Cifrovye vodyanye znaki i steganografiya: uchebnoe posobie s zadaniyami dlya prakticheskih i laboratornyh rabot. Elektron. tekstovye i graf. dan. Samara: SGAU. 2015. 128 s. 1 el. opt. disk (CD-ROM) (in Russian).
  11. Glumov N.I., Mitenkin V.A. Algoritm vstraivaniya poluhrupkih cifrovyh vodyanyh znakov dlya zadach autentifikacii izobrazhenij i skrytoj peredachi informacii. Komp'yuternaya optika. 2011. T. 35. № 2. S. 262–267 (in Russian).
  12. Bahrushina G.I., Koreneva O.V. Algoritm cifrovogo markirovaniya polutonovogo izobrazheniya, ispol'zuyushchij dvumernoe kodirovaniya po Uolshu. Elektronnoe nauchnoe izdanie «Uchenye zametki TOGU». 2016. T. 7. № 1. S. 48–60 (in Russian).
  13. Gil'mutdinov M.R., Veselov A.I., YAstrebov V.A., Tyurlikov A.M. Vvedenie v cifrovuyu obrabotku izobrazhenij. Metody fil'tracii i szhatiya izobrazhenij: Ucheb. posobie. SPb.: GUAP. 2015. 76 s.  (in Russian).
  14. Gil'mutdinov M.R., Tyurlikov A.M., Linskij E.M. Cifrovaya obrabotka izobrazhenij. Statisticheskij analiz i kvantovanie vizual'nyh dannyh. Uchebnoe posobie. SPb.: GUAP. 2013. 41 s. (in Russian).
  15. Krzemień M. Ł. Application of machine learning methods in detecting steganography in JPEG files: dis. Instytut Telekomunikacji. 2021.
  16. Chaumont M. Deep learning in steganography and steganalysis. Digital Media Steganography. Academic Press. 2020. P. 321–349.
  17. Isaeva M.N., Afanas'eva A.V.  Metod vyyavleniya tipov steganograficheskih atak na osnove «hrupkih» metok. Metody i tekhnicheskie sredstva obespecheniya bezopasnosti informacii. 2018. № 27. S. 53–54 (in Russian).
  18. Isaeva M.N. Raspoznavanie tipov steganograficheskih atak na osnove «hrupkih» metok. Fourth Conference On Software Engineering And Information Management (Seim-2019). 2019. S. 6–9 (in Russian).
  19. Isaeva M.N. Opredelenie tipov steganograficheskih atak s pomoshch'yu poluhrupkih metok s ispol'zovaniem metodov mashinnogo obucheniya. Volnovaya elektronika i infokommunikacionnye sistemy: XXIV Mezhdunar. Nauch. Konf. (31 maya – 4 iyunya 2021 g.): sb. statej: v 3 ch. CH.3. SPb. 2021. S. 99–106 (in Russian).
  20. Isaeva M.N. Detection Types of Steganographic Attacks Based on Semi-Fragile Watermarks Using Machine Learning. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). IEEE. 2021. S. 1–4.
Date of receipt: 27.10.2021
Approved after review: 16.11.2021
Accepted for publication: 24.11.2021