350 rub
Journal Science Intensive Technologies №7 for 2021 г.
Article in number:
Expanding the technological possibilities of plasma electrolytic treatment
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202107-02
UDC: 621.794.61
Authors:

V.K. Shatalov1, L.V. Lysenko2, A.O. Shtokal3, O.V. Sulina4, N.S. Gerasimova5, E.V. Rykov6

1,2,4,5,7 Kaluga branch of the Bauman MSTU (Kaluga, Russia)

3,6 Kaluga branch of Lavochkin Research and Production Association (Kaluga, Russia)

Abstract:

Plasma electrolytic treatment as a universal multifunctional method for obtaining an oxide coating on the surface of parts made of titanium alloys is considered. The complexity of plasma electrolytic treatment of large-sized parts in an electrolytic bath is indicated, especially in cases when it is required to form oxide layers not on all surfaces of the part, but in some places. Indicates which parts should be considered large-sized. Criteria for the selection of the optimal technology for plasma electrolytic treatment of large-sized parts are given. Using the example of processing a transition shaft, the methods of forming a PEO coating using special equipment, including a movable electrode for processing the surfaces of large-sized structures outside the bath, are shown. The modes and methods of processing various surfaces of large-sized parts structural elements are given. A comparative analysis of the described methods and methods of the surfaces oxidation of parts made of titanium alloys is carried out. The results of the work performed confirm the effectiveness of the application of methods of plasma electrolytic treatment outside the electrolytic bath for large-sized parts, since this ensures local oxidation of the surfaces and high quality of the formed oxide layers. The proposed methods of plasma electrolytic treatment can be implemented directly at the assembly sites. They also simplify technologies for the restoration of lost oxide layers during the repair of structures.

Pages: 15-21
For citation

Shatalov V.K., Lysenko L.V., Shtokal A.O., Sulina O.V., Gerasimova N.S., Rykov E.V. Expanding the technological possibilities of plasma electrolytic treatment. Science Intensive Technologies. 2021. V. 22. № 7. P. 15−21. DOI: https://doi.org/10.18127/j19998465-20210702 (in Russian)

References
  1. Gordienko P.S., Gnedenkov S.V. Mikrodugovoe oksidirovanie titana i ego splavov. Vladivostok: Dalnauka. 1997. 185 s. (in Russian)
  2. Suminov I.V., Belkin P.N., Epelfeld A.V., Lyudin V.B., Krit B.L., Borisov A.M. Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov. T. I. M.: Tekhnosfera. 2011. 464 s. (in Russian)
  3. Shtokal A.O., Shatalov V.K., Govorun T.A., Bazhenova O.P. Perspektivy ispolzovaniya sposobov mikrodugovogo oksidirovaniya poverkhnostei pri sozdanii teplozashchitnogo ekrana kosmicheskogo apparata dlya issledovaniya Solntsa. Korroziya: materialy, zashchita. 2020. № 1. S. 28−34. (in Russian)
  4. Gnedenkov S.V.,             Khrisanfova O.A.,    Zavidnaya A.Z.        Plazmennoe            elektroliticheskoe   oksidirovanie          metallov i        splavov   v tartratsoderzhashchikh rastvorakh. Vladivostok: Dalnauka. 2008. 144 s. (in Russian)
  5. Parfenov E.V., Nevyantseva R.R., Gorbatkov S.A., Erokhin A.L. Elektrolitno-plazmennaya obrabotka: modelirovanie, diagnostika, upravlenie. M.: Mashinostroenie. 2014. 380 s. (in Russian)
  6. Shatalov V.K., Lysenko L.V., Gorelova G.L. Mestnoe mikrodugovoe oksidirovanie poverkhnostei detalei iz titanovykh splavov. Korroziya: materialy, zashita. 2005. № 3. S. 45−48. (in Russian)
  7. Shatalov V.K., Lysenko L.V., Minaev A.N., Sulina O.V., Shtokal A.O. Sposoby mikrodugovogo oksidirovaniya poverkhnostei detalei iz titanovykh splavov. Nauka i obrazovanie (elektronnyi resurs). 2013. № 7. S. 1−18. DOI: 10.7463/0713.0583316. Rezhim dostupa: http://technomag.bmstu.ru/doc/583316.html (data obrashcheniya: 19.06.2017). (in Russian)
  8. Shatalov V.K., Karabakhina T.Yu., Travin V.V. Tekhnologicheskie sredstva formirovaniya pokrytii mikrodugovym oksidirovaniem na krupnogabaritnykh konstruktsiyakh. Naukoemkie tekhnologii. 2009. T. 10. № 5. S. 13−16. (in Russian)
  9. Shatalov V.K., Lysenko L.V., Sulina O.V. Tekhnologiya mikrodugovogo oksidirovaniya razlichnykh poverkhnostei krupnogabaritnykh konstruktsii. Naukoemkie tekhnologii. 2012. T. 13. № 2. S. 35−41. (in Russian)
  10. Shatalov V.K., Karabakhina T.Yu. Mikrodugovoe oksidirovanie poverkhnostei krupnogabaritnykh svarnykh konstruktsii. Korroziya: materialy, zashchita. 2009. № 3. S. 25−27. (in Russian)
  11. Pat. RF № 2194804. Sposob polucheniya zashchitnykh pokrytii na poverkhnosti metallov i splavov. Shatalov V.K., Lysenko L.V. Opubl. 20.12.2002. C25D11/02. (in Russian)
  12. Shatalov V.K., Stepanov S.E., Lysenko A.L., Travin V.V. Kinetika rosta tolshchiny oksidnykh plenok na titane. Korroziya: materialy, zashchita. 2008. № 12. S. 19−20. (in Russian)
  13. Aliofkhazraei M., Sabour Rouhaghdam A. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle. Appl. Surf. Sci. 2012. V. 258. P. 2093-2097. (in Russian)
  14. Shatalov V.K. Svoistva naplavok prutkami iz titanovykh splavov, obrabotannymi mikrodugovym oksidirovaniem. Korroziya: materialy, zashchita. 2016. № 11. S. 16−21. (in Russian)
Date of receipt: 28.07.2021
Approved after review: 12.08.2021
Accepted for publication: 14.10.2021