A.A. Kharchenko1, S.I. Vidyakin2, L.A. Tishchenko3
1–3 Bauman Moscow State Technical University (National Research University) (Moscow, Russia)
This paper presents a method for compiling a mathematical model of the signal propagation of the data exchange system between the control unit and the actuators located in the reactors of specialized chemical-technological equipment. The case of the implementation of a modern telemetry system and the main problems in the development of these systems are considered. To develop a mathematical model, a method was written for calculating the EMF of the secondary winding for the system under consideration, namely, the transformer with an open core. The search for a rational frequency for the simulated system is performed. The values of the magnetic induction for different distances between the windings are obtained. The scheme for studying the dependence of the magnetic induction on the magnetic field strength is assembled. To determine the grain size, a metallographic analysis of the pipeline microstructure was performed.
The necessity of comparing the experimental data and the data obtained by theoretical calculation is revealed; corrections of the mathematical model are made. The signal propagation range was predicted at a distance of about a meter. Based on the comparison of the mathematical model and the experiment, it is necessary to adjust the first one and develop a methodology for choosing rational parameters of the telemetry system for designing a data exchange system. The developed mathematical model for estimating the parameters of the propagation of the e / m wave allows us to predict the propagation of the signal at a given distance.
Kharchenko A.A., Vidyakin S.I., Tishchenko L.A. Construction of a mathematical model of the signal propagation of the data exchange system between the control unit and the actuators located in the reactors of specialized chemical-technological equipment. Science Intensive Technologies. 2021. V. 22. № 4. P. 5−11. DOI: 10.18127/j19998465-202104-01 (in Russian)
- Aristova V.A., Vidyakin S.I., Aleshin A.A. Vyvedenie akkumulyatora na rabochij rezhim, pri ekstremal'nyh klimaticheskih usloviyah. Molodezhnyj nauchno-tekhnicheskij vestnik. 2013. № 2. S. 50 (in Russian).
- Vdovin S.S. Proektirovanie impul'snyh transformatorov. Izd. 2-e, pererab. i dop. L.: Energoatomizdat. 1991. 208 s. (in Russian).
- Tishchenko L.A., Harchenko A.A. Issledovanie magnitnyh svojstv fragmenta kolonny burovyh trub neftyanoj skvazhiny dlya modelirovaniya rasprostraneniya elektromagnitnoj volny v telemetricheskoj sisteme. Materialy Mezhdunar. nauch.-tekh. konf. «Nauka. Issledovaniya. Praktika». Sankt-Peterburg, 2020 g. S. 109–113 (in Russian).
- Moskatov E.A. Teoriya raschetov impul'snyh transformatorov dvuhtaktnyh IIP i ee podtverzhdenie praktikoj. 7. 21 c. (in Russian).
- Najvel't G.S., Mazel' K.B., Husainov CH.I. Istochniki elektropitaniya radioelektronnoj apparatury: Spravochnik / Pod red. G.S. Najvel'ta. M.: Radio i svyaz'. 1986. 576 s. (in Russian).
- Al'tshuler I.B., Kartashevskij P.Ya., Livshic A.L., Fajnshtejn M.B. Raschet elektromagnitnyh polej v elektricheskih mashinah. M.: Energiya. 1968. 88 s. (in Russian).
- Malinin M.M. Spravochnik radiolyubitelya-konstruktora. Izd. 2-e, pererab. i dop. M.: Energiya. 1978. 752 s. (in Russian).
- Gudkov A.G., Meshkov S.A., Sinel'shchikova M.A., Skorohodov E.A. Tekhnologicheskaya optimizaciya mikroelektronnyh ustrojstv SVCH: Ucheb. posobie. M.: Izd-vo MGTU im. N. E. Baumana. 2014. 44 s. (in Russian).