Journal Science Intensive Technologies №3 for 2021 г.
Article in number:
Development of differential correction of coordinate-time and consumer navigation support based on trajectory data comparisons
Type of article: scientific article
DOI: 10.18127/j19998465-202103-08
UDC: 621.396.969
Authors:

A.O. Zhukov¹, N.A. Kupriyanov², S.V. Logunov³, D.K. Khegai4, B.P. Sidorov5

1 JSC «The Moscow Energy Institute Special Design Bureau» (Moscow, Russia), 

2, 3 Military Space Academy named Mozhayskiy (Saint Petersburg, Russia)

4 ITMO University (Saint Petersburg, Russia)

5 Department of the Ministry of defense of the Russian Federation (Moscow, Russia)

Abstract:

The article deals with the use of the results of measuring the catalogued space objects coordinates by a radar station for long-range detection in the interests of differential correction of coordinate-time and navigation support for consumers. We describe the idea of comparing trajectory data that allows us to calculate the total electronic content in the direction of a catalyzed space object under the assumption of a thin layer at the height of the ionosphere maximum. The main stages of the method of differential correction of coordinates-but-time and navigation support for consumers based on the results of comparing trajectory data are described. The results of modeling are presented, which allow us to evaluate the possible positive effect when using the proposed approach.

Pages: 68-77
For citation

Zhukov A.O., Kupriyanov N.A., Logunov S.V., Khegai D.K., Sidorov B.P. Development of differential correction of coordinate-time and consumer navigation support based on trajectory data comparisons. Science Intensive Technologies. 2021. V. 22. № 3. P. 68−77. DOI: 10.18127/j19998465-202103-08 (In Russian)

References
  1. Genike A.A. Global'nye sputnikovye sistemy opredeleniya mestopolozheniya i ih primenenie v geodezii. M.: Kartgeoncentr. 2004 (In Russian). 
  2. Radiosignaly i sostav cifrovoj informacii funkcional'nogo dopolneniya sistemy GLONASS sistemy differencial'noj korrekcii i monitoringa: interfejsnyj kontrol'nyj dokument. M.: OAO «Rossijskie kosmicheskie sistemy». 2012 (In Russian).
  3. Vasenina A.A., Sidorenko K.A. Primenenie sputnikovyh sistem GLONASS/GPS pri adaptacii ionosfernoj modeli. Vestnik SibGAU. 2015.  T. 16. № 1. S. 172–176 (In Russian).
  4. Yasyukevich Yu.V., Ovodenko V.B., Myl'nikova A.A. i dr. Metody kompensacii ionosfernoj sostavlyayushchej oshibki radiotekhnicheskih sistem s primeneniem dannyh polnogo elektronnogo soderzhaniya GPS/GLONASS. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser.: Radiotekhnicheskie i informacionnye sistemy. 2017. № 2 (34). S. 19–31 (In Russian).
  5. Yasyukevich Yu.V., Zhivet'ev I.V., Yasbkevich A.S. i dr. Vliyanie ionosfernoj i magnitosfernoj vozmushchennosti na sboi global'nyh navigacionnyh sputnikovyh sistem. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2017. T. 14. № 1. S. 88–98 (In Russian).
  6. Zhukov A.O., Tyutin I.V., Trekin V.V. i dr. Osobennosti uslovij funkcionirovaniya RLS v vysokih shirotah. Radiotekhnika. 2016. № 10.  S. 153–158 (In Russian).
  7. Shirman Ya.D. i dr. Radioelektronnye sistemy: Osnovy postroeniya i teoriya: Spravochnik. M.: Radiotekhnika. 2007 (In Russian).
  8. Sokolov K.S., Ovodenko V.B., Trekin V.V. i dr. Analiz vliyaniya kratkovremennyh variacij meteoparametrov na oshibki izmereniya koordinat v RLS. Zhurnal radioelektroniki. 2013. № 6. S. 31–42 (In Russian).
  9. Boev S.F., Aksenov O.Yu., Vinogradov A.G. i dr. Problemnye voprosy sozdaniya sistemy prognoza geogeliofizicheskih uslovij funkcionirovaniya RLS DO. Trudy XXIV Vserossijskoj nauchnoj konferencii rasprostraneniya radiovoln. 2014. T. 4. S. 5–8 (In Russian).
  10. Kunicyn V.E., Nesterov I.A., Padohin A.M. i dr. Radiotomografiya ionosfery na baze navigacionnyh sistem GPS/GLONASS. Radiotekhnika i elektronika. 2011. T. 56. S. 1285–1297 (In Russian).
  11. Vinogradov A.G., Teoharov A.N. Dvuhpolosnyj metod ocenki polnogo elektronnogo soderzhaniya ionosfery po signalam shirokopolosnoj RLS. Dinamicheskie sistemy. 2016. T. 6 (34). № 3. S. 275–287 (In Russian).
  12. Olejnikov I.I., Astrahancev M.V. Sposob postroeniya rasshirennogo kataloga kosmicheskih ob"ektov razmerami bolee 1 sm na osnove bazy dannyh ASPOS OKP. Reshetnevskie chteniya. 2013. s. 37–39 (In Russian).
  13. Rajkunov G.G. Kosmicheskij musor. Metody nablyudeniya i modeli kosmicheskogo musora. M.: Fizmatlit. 2014 (In Russian).
  14. Grishko D.A., Majorova V.I., Chagina V.A. Raschet dvizheniya kosmicheskogo apparata na okolokrugovoj orbite po dannym TLE po uproshchennoj modeli SGP. Vestnik MGTU im. N.E. Baumana. 2016. № 1. S. 52–66 (In Russian).
  15. Boev S.F. i dr. Moshchnye nadgorizontnye RLS dal'nego obnaruzheniya: razrabotka, ispytaniya, funkcionirovanie: kollektivnaya monografiya. M.: Radiotekhnika. 2013 (In Russian).
  16. Lebedev V.P., Medvedev A.V., Tolstikov M.V. Interferencionnye izmereniya ionosfernyh vozmushchenij na Irkutskom radare nekogerentnogo rasseyaniya. Vestnik SibGAU. 2013. № 5 (51). S. 166–169 (In Russian).
  17. Aksenov O.Yu., Veniaminov S.S., Yakubovskij S.V. Vozmozhnosti sploshnogo radiolokacionnogo polya SPRN po nablyudeniyu kosmicheskih ob"ektov. Ekologicheskij vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva. 2017. Vyp. 2. S. 12–19 (In Russian).
  18. Kupriyanov N.A., Logunov S.V. Metodika ranzhirovaniya katalogizirovannyh kosmicheskih ob"ektov, ispol'zuemyh dlya povysheniya tochnosti opredeleniya koordinat ob"ektov radiolokacionnoj stanciej dal'nego obnaruzheniya. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2019. Vyp. 1. S. 75–85 (In Russian).
Date of receipt: 10.03.2021
Approved after review: 22.03.2021
Accepted for publication: 29.03.2021