350 rub
Journal Science Intensive Technologies №2 for 2021 г.
Article in number:
On advanced technologies of armor protection: models, materials, designs
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202102-05
UDC: 539.893:669.15
Authors:

S.V. Serikov¹, I.K. Ustinov², A.P. Korzhavyi³

1 LLC "Sura" Shchelkovo, Moscow region

2,3 Kaluga branch of the Bauman Moscow State Technical University

Abstract:

The creation of materials and technologies that ensure the safety of a person and objects of his vital activity in various emergency situations is impossible without modeling the properties of the main parameters of objects that pose a threat to them. Research in this direction is relevant and timely. Comprehensive studies have been carried out in terms of creating materials, structures and technologies for armor protection, analyzing and modeling the properties and parameters of the striker (object of threat) and target (object of armor protection), special attention is paid to the process of high-speed (meeting) of the striker with the target. Various options are modeled based on the properties and parameters of objects of threat and objects of armor protection with the use of modern achievements in the mechanics of destruction processes and by solving nonlinear differential equations in mathematical modeling. The prospects for the use of porous materials and structural design have been identified and shown, and methods for their preparation have been proposed. The level of survivability of the armor protection materials was modeled depending on the parameters, including the initial velocity of the objects of threat (materials, shells and bullets).

Pages: 43-51
For citation

Serikov S.V., Ustinov I.K., Korzhavyi A.P. On advanced technologies of armor protection: models, materials, designs. Science Intensive Technologies. 2021. V. 22. № 2. P. 43−51. DOI: https://doi.org/10.18127/j19998465-202102-05 (In Russian).

References
  1. Vajcev A.I., Kroposhin V.S., Radionova I.G. Kompleksnye nemetallicheskie vklyucheniya i svojstva stalej. M.: Metallurgizdat. 2015. 276 s. (In Russian).
  2. Filarowski A. Investigation of structural – Phase states and Features of Plastic Deformation of the Austenitic Precipitation-Hardening Co-Ni-Nb Alloy. Metals. 2018. № 1. P. 1–11.
  3. Ustinov I.K., Korzhavyj A.P. Sposoby i tekhnologii bronezashchity tekhniki i personala. Naukoemkie tekhnologii. 2015. T. 16. № 6.  S. 70–74 (In Russian).
  4. Gladyshev S.A., Grigoryan V.A. Bronevye stali. M.: Intermet Inzhiniring. 2010. 336 s. (In Russian).
  5. Usherenko S.M. Sovremennye predstavleniya ob effekte sverhglubokogo pronikaniya. Inzhe-nerno-fizicheskij zhurnal. 2002. T. 75.  № 3. S. 183–198 (In Russian).
  6. Usherenko S.M., Gushchin V.I., Dybov O.A. Effekt sverhglubokogo pronikaniya, probivaniya pre-grad i ego vliyanie na rabotu elektronnyh elementov. Himicheskaya fizika. 2002. T. 21. № 9. S. 41–49 (In Russian).
  7. Serikov S.V. Issledovanie deformacii i razrusheniya titanovyh splavov metodami modeli-rovaniya. Titan. 2006. № 1. S. 53–59 (In Russian).
  8. Serikov S.V. Koefficient dinamicheskoj vyazkosti metallov i titanovyh splavov. Titan. 2018. № 3. S. 16–20 (In Russian).
  9. Korzhavyj A.P., Kapustin V.I., Koz'min V.G. Metody eksperimental'noj fiziki v izbran-nyh tekhnologiyah zashchity prirody i cheloveka. M.: Izdatel'stvo MGTU im. N.E. Baumana. 2012. 352 s. (In Russian).
  10. Vyacheslavova O.F., Usov S.V., Sviridenko D.S. Formirovanie nanokompleksov na baze struk-turno-informacionnyh tekhnologij i kompleksnyh avtomatizirovannyh system. Tekhnologiya mashinostroeniya. 2009. № 4. S. 52–56 (In Russian).
  11. Grigor'yanc A.G., Misyurov A.I., Shiganov I.N. i dr. Formoizmenenie vanny rasplava pri la-zernom legirovanii poverhnosti bandazhnyh stalej. Svarochnoe proizvodstvo. 2019. № 7. S. 17–22 (In Russian).
  12. Grigor'yanc A.G., Shiganov I.N., Tret'yakov R.S. Osobennosti formirovaniya poverhnostnogo kompozicionnogo sloya metodom lazernoporoshkovogo vvedeniya chastic monokarbida vol'frama v matricu iz uglerodistoj stali. Svarochnoe proizvodstvo. 2018. № 8. S. 19–23 (In Russian).
  13. Usov S.V., Vyacheslavova O.F. Teoreticheskie osnovy postroeniya kombinirovannyh elektro-tekhnologicheskih metodov obrabotki detalej mashin. ZHurnal tekhnicheskih issledovanij. 2016. T. 2. № 6. S. 3 (In Russian).
  14. Usov S.V., Drozdov Yu.L., Koklunin L.N. i dr. Proektirovanie kombinirovannyh elektrotekh-nologicheskih metodov povysheniya dolgovechnosti detalej, rabotayushchih v usloviyah udarno-abrazivnogo iznashivaniya. Vestnik mashinostroeniya. 1991. № 5. S. 51 (In Russian).
  15. Isaev S.I., Kozhinov I.A., Kofanov V.I., Leont'ev A.I., Mironov B.M. Teoriya teplomasso-obmena: uchebnik dlya vuzov . Pod red. A.I. Leont'eva. M.: Izdatel'stvo MGTU im N.E. Baumana. 2018. 462 s. (In Russian).
  16. Patent RF № 20715903. Sposob opredeleniya fizicheskih parametrov metallov . S.V. Seri-kov. 2020. BI № 3 (In Russian).
  17. Bondarenko G.G., Kabanova T.A., Rybalko T.V. Osnovy materialovedeniya: uchebnik . Pod red. G.G. Bondarenko. M.: BINOM. Laboratoriya znanij. 2014. 760 s. (In Russian).
Date of receipt: 29.01.2021
Approved after review: 10.02.2020
Accepted for publication: 09.03.2021