350 rub
Journal Science Intensive Technologies №1 for 2021 г.
Article in number:
Research and development of vacuum thin-film nanotechnology for creating electrode materials for current sources
DOI: https://doi.org/10.18127/j22250980-202003-02
UDC: 621.319.4
Authors:

V.V. Sleptsov – Dr. Sc. (Eng.), Head of the Department “Radioelectronics, Telecommunications  and Nanotechnology”, Moscow Aviation Institute (National Research University)

E-mail: 08fraktal@inbox.ru, 

D.Yu. Kukushkin – Ph.D. (Eng.), Assistant, Moscow Aviation Institute (National Research University)  E-mail: skyline34@nxt.ru

A.O. Diteleva – Assistant, Moscow Aviation Institute (National Research University) E-mail: anna.diteleva@mail.ru

R.A. Tsyrkov – Post-graduate Student, Moscow Aviation Institute (National Research University)  E-mail: poma1992@yandex.ru

Abstract:

Traditional thick-film production technology CCS for almost 20 years not only does not provide the necessary dynamics of growth of specific energy intensity, but also tends to reduce it in order to increase the safety of operation of products. The development of thinfilm technologies and new electrochemical systems with a higher resource (more than 10,000 charge – discharge cycles-20 years of operation) and a higher specific energy (500…1000 W∙h/kg) is considered to be the most important breakthrough tasks at the moment. A promising direction is considered to be the use of elastic conducting matrices based on carbon in the creation of nanocomposite structures.

To develop a complex of vacuum thin-film nanotechnologies for creating electrode materials for current sources based on a flexible carbon matrix with a highly developed surface.

A complex of vacuum thin-film nanotechnologies for creating electrode materials for current sources has been Developed. Based on the developed electrode material, chemical current sources (CCS), ultra-high-capacity capacitor structures (UCS) and pseudocapacitors and hybrid capacitors were manufactured and studied. Analysis of the results of specific energomasha super powerful capacitor structures (UCS), has superb capacitor structures with metallization, hybrid UCS based on cobaltate lithium capacitors with pseudoeunotia showed that the specific energy consumption of hybrid UCS based on cobaltate lithium capacitors with pseudoeunotia oxide of manganese, have a value exceeding the specific energy of UCS 4.5 and 4.8 times, respectively. The developed technology allows increasing the energy consumption of cells and reducing their internal resistance.The developed complex of vacuum thin-film nanotechnologies allows creating electrode materials based on a flexible carbon matrix with a highly developed surface. The resulting electrode materials can be used in energy storage.

Pages: 65-76
For citation

Sleptsov V.V., Kukushkin D.Yu., Diteleva A.O. Research and development of vacuum thin-film nanotechnology for creating electrode materials for current sources. Nanotechnology: development and applications – XXI century. 2020 V. 12. № 3. P. 17–28. DOI: https://doi.org/10.18127/j22250980-202003-02 (In Russian).

References
  1. Battery University. BU-205: Types of Lithium-ion. [V Internete] http://batteryuniversity.com/learn/article/types_of_lithium_ion.
  2. Warner J. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types, and Terminology. Elsevier Inc. 2015.
  3. Xiao Q., Li B., Dai F., Yang L., Cai M. Application of Lithium Ion Batteries in Vehicle Electrification. Electrochemical Energy: Advanced Materials and Technologies. 2016.
  4. Kurzweil P. Dietlmeier O.K. Elektrochemische Speicher: Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Grundlagen. Springer Fachmedien Wiesbaden. 2015.
  5. Kurzweil P. Post-Lithium-Ion Battery Chemistries for Hybrid Electric Vehicles and Battery Electric Vehicles. Advances in Battery Technologies for Electric Vehicles. Elsevier Ltd. 2015.
  6. Dahn J., Ehrlich G.M. Lithium-Ion Batteries. Linden’s Handbook of Batteries: 4th edition. McGraw-Hill Companies. 2011.
  7. Johnson Matthey Battery Systems. Our Guide to Batteries. 2012.
  8. Hocking M., Kan J., Young P., Terry C., Begleiter D. Welcome to the Lithium-Ion Age: DB Global Markets Research. b.m.: Deutsche Bank. 2016.
  9. Kozaderov. O.A. Sovremennye himicheskie istochniki toka: Ucheb. posobie. Izd. 2-e, ster. SPb.: Lan'. 2017 (In Russian). 
  10. Slepcov V.V., Zinin Yu.V., Diteleva A.O. Perspektivy razvitiya mobil'noj energetiki. Uspekhi v himii i himicheskoj tekhnologii. 2019. T. XXXIII. № 1. S. 28–30 (In Russian).
  11. Skleznev A.A. Analiz osnovnyh tendencij razvitiya himicheskih istochnikov toka i drugih nakopitelej energii. Otchet, shifr «TOK». M. 2017 (In Russian).
  12. Miller J.R., Simon P. Materials science: electrochemical capacitors for energy management. Science 2008. V. 321. P. 651–2.
  13. Xuli Chen, Rajib Paul, Liming Dai. Carbon-based supercapacitors for efficient energy storage. National Science Review. V. 4. Is. 3. P. 453–489. DOI: 10.1093/nsr/nwx009
  14. Lebedev E.A. Razrabotka processov formirovaniya i issledovanie svojstv elementov vydeleniya tepla i nakopleniya energii dlya termoelektricheskih batarej: Diss. … kand. tekh. nauk. M.: Moskovskij institut elektronnoj tekhniki. 2017. 184 s. (In Russian).
  15. Vu Dyk Hoan. Issledovanie i razrabotka tonkoplenochnyh mnogoslojnyh elektroliticheskih yacheek: Diss. … kand. tekh. nauk. M.: Moskovskij aviacionnyj institut. 2017. 143 s. (In Russian)
  16. Kukushkin D.Yu. Razrabotka fiziko-tekhnicheskih osnov elektroimpul'snogo metoda sinteza nanochastic metallov i splavov v zhidkoj dielektricheskoj srede: Diss. … kand. tekh. nauk. M.: Moskovskij aviacionnyj institut. 2019. 149 s. (In Russian)
  17. Sleptsov V.V., Kozhitov L.V., Muratov D.G., Popkova A.V., Savkin A.V., Diteleva A.O., Kozlov A.P. Thin film vacuum technologies for a production of highlycapacitive electrolytic capacitors. Journal of Physics Conference Series 1313 (26th International Conference on Vacuum Technique and Technology 18–20 June 2019, Saint Petersburg, Russian Federation). September 2019.
  18. Goffman V.G., Gorohovskij A.V., Burte E.P., Slepcov V.V., Gorshkov N.V., Kovyneva N.N., Vikulova M.A., Nikitina N.V. Modificirovannye titanovye elektrody dlya nakopitelej energii. Elektrohimicheskaya energetika. 2017. №4. S. 225–234 (In Russian).
  19. Gromov D.G., Gal'perin V.A., Lebedev E.A., Kicyuk E.P. Razvitie elektrohimicheskih nakopitelej elektricheskoj energii na osnove nanostruktur. Nanotekhnologii v elektronike. M.: Tekhnosfera. 2015 (In Russian).
  20. Tabarov F.S. Poluchenie i svojstva voloknistyh uglerodnyh materialov dlya elektrodov superkondensatorov: Diss. … kand. tekh. nauk. M.: Nacional'nyj issledovatel'skij tekhnologicheskij universtitet «MISiS». 2020. 115 s. (In Russian).
  21. Sleptsov V.V., Ushkar M.N., Zinin Yu.V., Shchur P.A., Diteleva A.O., Kyaw Zaw Lwin. Study of the specific energy consumption of universal electrode materials for hybrid ultra-high-volume capacitor systems. IOP Conference Series: Materials Science and Engineering. 2019.
Date of receipt: 20 июля 2020 г.