350 rub
Journal Science Intensive Technologies №1 for 2021 г.
Article in number:
Investigation of the attenuation of the fluxes of the low-energy plasma component of electric rocket engines by the ventilation holes of the unpressurized instrument compartment of the spacecraft
DOI: https://doi.org/10.18127/j19998465-202101-01
UDC: 533.95
Authors:

I.A. Maximov¹, A.B. Nadiradze², R.R. Rakhmatullin³, V.A. Smirnov4, R.E. Tikhomirov5, V.V. Shaposhnikov6

1,4,5 JSC “Information Satellite Systems” n.a. acad. M.F. Reshetnev” (Moscow, Russia)

2,3,6 Moscow Aviation Institute (National Research University) (Moscow, Russia)

Abstract:

The results of an experimental study of the attenuation of the fluxes of the low-energy component of the plasma formed during the operation of electric propulsion engines (ERE), ventilation holes (VH) of the non-sealed equipment compartment (NSEC) of the spacecraft (SC) are presented. Authors studied the attenuation of plasma fluxes by standard VHs made in honeycomb panels that form the NSEC. A Hall-effect engine of the SPT-70 type was used as a plasma source. The experiment consisted of measuring the plasma concentration at the inlet and outlet of the VH. The concentration at the inlet was measured with a flat Langmuir probe, and at the outlet with a Faraday probe, which allows collecting all ions passing through the VH. The aim of the work was to study the weakening of the fluxes of the lowenergy component of the EJE plasma when passing through the VH in the honeycomb-nels that form the NSEC.

Based on the experimental data, a semi-empirical model was constructed that describes the dependence of the attenuation coefficient of plasma flows on the geometric parameters of the vent-holes. It has been established that a vent-holes of this design attenuates the plasma flows by 102 ... 104 times. The largest contribution to the weakening of plasma fluxes is made by the honeycomb filler, which is due to the recombination of ions during their collision with the channel walls. Taking into account the attenuation of the fluxes of the low-energy component of the plasma of electric rocket engines by ventilation holes is a key stage in assessing the effect of plasma on the power on-board equipment of spacecraft and should be used by spacecraft developers when analyzing the resistance to this factor.

Pages: 5-12
For citation

Maximov I.A., Nadiradze A.B., Rakhmatullin R.R., Smirnov V.A., Tikhomirov R.E., Shaposhnikov V.V. Investigation of the attenuation of the fluxes of the low-energy plasma component of electric rocket engines by the ventilation holes of the unpressurized instrument compartment of the spacecraft. Science Intensive Technologies. 2021. V. 22. № 1. P. 5−12. DOI:  https://doi.org/10.18127/j

References
  1. Smirnov V.A., Maksimov I.A., Ivanov V.V., Nadiradze A.B. Povyshenie nadezhnosti negermetichnogo pribornogo otseka kosmicheskogo apparata. Vestnik SibGAU: Sb. nauchn. tr. Krasnoyarsk: SibGAU. 2007. Vyp. 14. S. 88–91 (In Russian).
  2. Moschetti V., Maciaszek T. Heat pipes on Intelsat V-FM 15 design, test and in orbit performance after 6 months operation. SAE Tech. Pap. Ser. 1991. № 911482. C. 1–10.
  3. Gorshkov O.A., Murav'ev V.A., Shagajda A.A. Holovskie i ionnye plazmennye dvigateli dlya kosmicheskih apparatov. M.: Mashinostroenie. 2008 (In Russian).
  4. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Jet Propulsion Laboratory. California Institute of Technology. 2008.
  5. Kim V. Stacionarnye plazmennye dvigateli v Rossii: problemy i perspektivy. Elektronnyj zhurnal «Trudy MAI». 2012. Vypusk № 60 (In Russian). 
  6. Kim V.P., Nadiradze A.B., Popov G.A., Hodnenko V.P., Shishkin G.G. Problemy primeneniya elektroraketnyh dvigatelej na kosmicheskih apparatah. V kn.: Model' kosmosa. Izd. 8-e. T. 2. Vozdejstvie kosmicheskoj sredy na materialy i oborudovanie kosmicheskih apparatov. Pod red. prof. L.S. Novikova. M.: Knizhnyj dom Universitet. 2007. S. 615–659 (In Russian).
  7. Ivanov V.V., Maksimov I.A., Smirnov V.A., Nadiradze A.B., Shaposhnikov V.V. Raschetnaya model' dlya ocenki pronikaniya plazmy ERD v pribornye otseki KA. Vestnik SibGAU. 2006. Vyp. 3 (10). S. 49–52 (In Russian).
  8. Ivanov V.V., Maksimov I.A., Balashov S.V., Pervuhin A.V., Nadiradze A.B. Metodologiya obespecheniya stojkosti kosmicheskogo apparata v usloviyah plazmy, formiruemoj stacionarnymi plazmennymi dvigatelyami. Vestnik SibGAU. 2006. № 1. S. 76–80 (In Russian).
  9. Ivanov V.V., Maksimov I.A., Nadiradze A.B., Shaposhnikov V.V. Mekhanizmy vozdejstviya plazmy elektroraketnyh dvigatelej na rabotu bortovoj apparatury kosmicheskih apparatov. V sb. nauchnyh trudov: Kosmicheskie vekhi. Pod red. N.A. Testoedova. Krasnoyarsk: IP Suhol'skaya Yu.P. 2009. S. 258–268 (In Russian). («Vestnik SibGAU», Krasnoyarsk, 2007 g, vyp. 3(16).
  10. Pleshivcev N.V., Bazhin A.I. Fizika vozdejstviya ionnyh puchkov na materialy. M.: Vuzovskaya kniga. 1998 (In Russian).
  11. Morozov A.I. Vvedenie v plazmodinamiku. M.: Fizmatlit. 2006 (In Russian).
  12. Patent na izobretenie № 2692286 (RF) Negermetichnyj pribornyj otsek kosmicheskogo apparata. V.A. Smirnov, V.V. Tibil'deeva, I.A. Maksimov, S.I. Open'ko, S.G. Kochura. 2019 (In Russian).
Date of receipt: 3.12.2020
Approved after review: 23.12.2020
Accepted for publication: 12.01.2021