350 rub
Journal Science Intensive Technologies №4 for 2020 г.
Article in number:
Method for building a controiagnostic system of radar of a large block structure using analogue processors
DOI: 10.18127/j19998465-202004-02
UDC: 519.8, 658.51, 621.45.018
Authors:

N.L. Dembitskii – Ph.D. (Eng.), Associate Professor, 

Moscow Aviation Institute (National Research University)

E-mail: ndembitsky@gmail.com

A.S. Logovsky – Ph.D. (Phys.-Math.), Chief Designer, 

Academician A.L. Minz Radiotechnical Institute (Moscow)

E-mail: logovsky@rti-mints.ru

V.A. Pankratov – Lead Engineer, 

Academician A.L. Minz Radiotechnical Institute (Moscow)

E-mail: akazantsev@rti-mints.ru

A.V. Timoshenko – Dr. Sc. (Eng.), Professor, Deputy General Designer, 

Academician A. L. Minz Radiotechnical Institute (Moscow)

E-mail: u567ku78@gmail.com

Abstract:

To reduce the time of detection, fault location and recovery it is necessary to increase the requirements on the intensity of monitoring of all systems and components of the radar. There is a need to implement control systems at all levels of the design and technological hierarchy, which leads to the formation of distributed control and diagnostic networks (DCCN).

Taking into account the necessity to process and transmit large data flows, the use of digital systems in DDCN at a certain stage of their development becomes inefficient. The development presented in the article allows on the basis of use of analog methods of functional and logical processing of signals to increase efficiency of operational control of radar during its combat application.

The basic element of the built-in DCCN is the continuum processor, which solves the tasks of measuring the controlled parameters deviation from the required values, determination of the failures condition and transfer of information about failures over the network without information digitization.

The integrated diagnostics module on continuous processors in a heterarchical control and diagnostics network solves the task of determining the source of failures of the radar for the entire depth of parameter monitoring.

Application of the control system in the DCCN allows to increase the operability of the radar due to the completeness of the operational control of the systems and devices operability for the whole depth of the design hierarchy.

Pages: 17-27
References
  1. Aleksandrovskaya L.N., Afanas'ev A.P., Lisov A.A. Sovremennye metody obespecheniya bezopasnosti slozhnyh tekhnicheskih sistem. M.: Logos. 2001.  208 c. (In Russian).
  2. Tanenbaum van Steen E., M. Raspredelennye sistemy. Principy i paradigmy. SPb.: Piter. 2003. S. 40–42 (Seriya «Klassika computer science») (In Russian). 
  3. Elizarov I.A., Martem'yanov Yu.F., Skhirtladze A.G., Frolov S.V. Tekhnicheskie sredstva avtomatizacii. Programmno-tekhnicheskie kompleksy i kontrollery: Ucheb. posobie. M.: Mashinostroenie-1. 2004. 180 s. (In Russian).
  4. Sadyhov G.S., Savchenko V.P., Sidnyaev N.I. Modeli i metody ocenki ostatochnogo resursa izdelij radioelektroniki. M.: Izd-vo MGTU im. N. E. Baumana. 2015. 382 s. (In Russian).
  5. Bogdanov D.S. Preimushchestva i nedostatki kommunikacionnyh interfejsov. Nauka, tekhnika i obrazovanie. 2019. № 4 (57). URL: https://cyberleninka.ru/ article/n/preimuschestva-i-nedostatki-kommunikatsionnyh-interfeysov (data obrashcheniya: 30.03.2020) (In Russian).
  6. Ignat'ev S.V., Klyomin A.A., Trushina O.V., Yakovlev A.A., Logovskij A.S. Sposob opredeleniya ob"ema vstroennyh apparatnyh sredstv kontrolya i diagnostirovaniya na osnove veroyatnostnoj modeli radioelektronnoj apparatury. Naukoemkie tekhnologii.  2019. № 2. S. 5–14 DOI 10.18127/j19998465201902-01 (In Russian).
  7. Vasil'ev A.E. Mikrokontrollery: razrabotka vstraivaemyh prilozhenij. SPb.: BHV-Peterburg. 2008. 304 s. (In Russian).
  8. Brodin V.B., Kalinin A.V. Sistemy na mikrokontrollerah i BIS programmiruemoj logiki. M.: EKOM. 2002. 400 s. (In Russian).
  9. Boev S.F., Logovskij A.S. Upravlenie processami sozdaniya RLS DO funkcional'no-blochnoj struktury. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2017. № 7 (In Russian).
  10. Boev S.F., Linkevichius A.P., Logovskij A.S., Yakubovskij S.V. O vozmozhnosti snizheniya srokov i stoimosti sozdaniya RLS DO s ispol'zovaniem stenda glavnogo konstruktora. ZHurnal radioelektroniki [elektronnyj zhurnal]. 2017. № 9. Rezhim dostupa: http://jre.cplire.ru/jre/sep17/10/text.pdf (In Russian).
  11. Kofman A. Vvedenie v prikladnuyu kombinatoriku. M.: Nauka. 1975. 480 s. (In Russian).
  12. Pavlov V.N., Nogin V.N. Skhemotekhnika analogovyh ustrojstv: Uchebnik dlya vuzov. M.: Goryachaya liniya – Telekom. 2001. 320 s. (In Russian).
  13. Anashin V.N., Isaev S.G., Ermakov V.V. Skhemotekhnika. Analogovaya skhemotekhnika. Penza: Inf.-izd. Centr PGU. 2009. 268 s. (In Russian).
  14. Dembickij N.L., Logovskij A.S., Pankratov V.A., Timoshenko A.V. Kontrol' funkcional'nyh harakteristik RLS DO s ispol'zovaniem kontinual'nyh raspredelennyh vychislitelej. Zhurnal radioelektroniki [elektronnyj zhurnal]. 2020. № 1. Rezhim dostupa: http://jre.cplire.ru/jre/jan20/3/text.pdf. DOI 10.30898/1684-1719.2020.1.3 (In Russian).
  15. Dembickij N.L. Analogovye processory. M.: Izd-vo MAI. 2018. 176 s. (In Russian).
  16. Timoshenko A.V., Vasil'kov Yu.V., Sovetov V.A. Integral'naya ocenka tochnosti kratkosrochnogo prognoza nadezhnosti radiotekhnicheskih sistem. ZHurnal radioelektroniki [elektronnyj zhurnal]. 2020. № 2. S. 8. Rezhim dostupa: http://jre.cplire.ru/jre/feb20/7/text.pdf. DOI 10.30898/1684-1719.2020.2.7 (In Russian).
Date of receipt: 3 мая 2020 г.