350 rub
Journal Science Intensive Technologies №3 for 2020 г.
Article in number:
Structural approach to the development of a geometric model of the structure of massive metal glass in the Fe-Nb-B system
Type of article: scientific article
DOI: 10.18127/j19998465-202002-3-08
UDC: 539.21:541
Authors:

Nguyen Van Toan – Post-graduate Student, 

Bauman Moscow State Technical University

E-mail: toanhamai@gmail.com

Nguyen Quang Thuong – Dr.Sc.(Eng.), Professor, 

State University of Management (Moscow)

E-mail: tikrus20.21@gmail.com

Abstract:

The article presents the cluster nature of the effect of massive metal glass in the iron-niobium-boron system, considers the formation of spirals from «collective» tetrahedron – a cluster formed from an octahedron with tetrahedron attached to it along the faces, as well as the question of the location of boron molecules in the resulting spirals, and provides a refined view of the spirals describing the structure of metal glasses in the Fe-Nb-B system.

Twin clusters that are structural units for the helices of the Fe-Nb-B system are formed as an elementary building unit of the desired chain – the HCC of a tetrahedron with an edge equal to five atomic radii. Tetrahedral twinned clusters consisting of atoms that are simultaneously located in HCC and GP configurations are presented. Based on the refined elementary unit of the chain, a refined form of spirals describing the structure of metal glasses of the Fe-Nb-B system is obtained. A tetrahedral union of intersecting icosahedra along the inner tetrahedron is defined as the construction unit of the structure of massive glasses. The Fe and Nb atoms are located at the vertices of the three-dimensional body, and the 12-atom cluster B is located inside the intersection tetrahedron.

The generation of the structure of massive metal glasses by spirals explains the phenomenon of massive metal glass due to the complexity of the structure and the complexity of the transition from an amorphous state to a crystalline one.

Pages: 82-87
References
  1. Kraposhin V.S., Talis A.L., Yantszin Van Geometricheskaya model polimorfnykh prevrashchenii v titane i tsirkonii. Metallovedenie i termicheskaya obrabotka metallov. 2005. № 9(603). S. 8−16. (In Russian).
  2. Kraposhin V.S., Talis A.L. Simmetriinye osnovy polimernoi modeli plotnoupakovannykh metallicheskikh zhidkostei i stekol. Rasplavy. 2016. № 2. S. 85−98. (In Russian).
  3. Zolotukhin I.V. Fizicheskie svoistva amorfnykh metallicheskikh materialov. M.: Metallurgiya. 1986. 176 s. (In Russian).
  4. Metallicheskie stekla. Pod red. Dzh.Dzh. Gilmana i KH.Dzh. Limi. Per. s angl. M.: Metallurgiya. 1984. 264 s. (In Russian).
  5. Vyugov P.N., Dmitrenko A.E. Metallicheskie stekla. Voprosy atomnoi nauki i tekhniki. 2004. № 6. Ser. «Vakuum, chistye materialy, sverkhprovodniki» (14). S. 185−191. (In Russian).
  6. Zolotukhin I.V. Amorfnye metallicheskie materialy. Sorosovskii obrazovatelnyi zhurnal. 1997. № 4. S. 73−78. (In Russian).
  7. Abrosimova G.E. Evolyutsiya struktury metallicheskikh stekol pri vneshnikh vozdeistviyakh. Dis. … d.f.-m.n. Chernogolovka. 2012. 294 s. (In Russian).
  8. Belashchenko D.K., Sirenko A.N., Tytik D.L. Vliyanie formy mezhchastichnogo potentsiala na strukturnye prevrashcheniya v metallicheskikh klasterakh. Rossiiskie nanotekhnologii. 2009. T. 4. № 9−10. S. 14−21. (In Russian).
  9. Kraposhin V.S. i dr. Kristallicheskoe stroenie promezhutochnykh struktur v splavakh s effektom zapominaniya formy kak realizatsiya konstruktsii algebraicheskoi geometrii. Metallurgiya i termicheskaya obrabotka metallov. 2007. № 7(625). S. 3−9. (In Russian).
  10. Kraposhin V.S. Atomnyi mekhanizm martensitnykh prevrashchenii v ramkakh algebraicheskoi geometrii. Problemy chernoi metallurgii i materialovedeniya. 2008. № 1. S. 60−73. (In Russian).
  11. Kraposhin V.S., Talis A.L., Van Tkhuan Nguen Struktura ω-fazy kak konstruktsiya proektivnoi geometrii i promezhutochnaya konfiguratsiya pri polimorfnykh prevrashcheniyakh v titane i tsirkonii. Materialovedenie. 2007. № 8. S. 2−9. (In Russian).
  12. Chen H.S. Glassy metals. Rep. Progress Phys. 1980. № 43. P. 353−432.
  13. Skakov Yu.A., Kraposhin V.S. Zatverdevanie v usloviyakh sverkhbystrogo okhlazhdeniya. Fazovye prevrashcheniya pri nagreve metallicheskikh stekol. Itogi nauki i tekhniki. Metallovedenie i termicheskaya obrabotka. M.: VINITI. 1980. T. 13. S. 3−78. (In Russian).
  14. D. Ma, Stoica A.D., Wang X.-L. Volume conservation in bulk metallic glasses. Applied Physics Letters. 2007. № 91. P. 021905.
  15. Shen T.D., Harms U., Schwarz R.B. Correlation between the volume change during crystallization and the thermal stability of supercooled liquids. Appl. Phys. Lett. 2003. № 83. P. 4512−4514.
  16. Klement Jr.W., Willens R.H. and Duwez P. Non-crystalline structure in solidified gold–silicon alloys. Nature. 1960. № 187. P. 869−870.
  17. Angell C.A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids. 1988. V. 102. P. 205.
  18. Kraposhin V.S., Talis A.L., Kamenskaya N.I. et al. Arrangement of collective B12 atoms in the crystal structure of γ-Fe and effect of boron on the hardenability of steel. Metal Science and Heat Treatment. 2018. V. 60. № 1−2. P. 63−71.
Date of receipt: 15 января 2020 г.