350 rub
Journal Science Intensive Technologies №3 for 2020 г.
Article in number:
Engineering technique for vibrodiagnostics of structures on-board radio electronic means
Type of article: scientific article
DOI: 10.18127/j19998465-202002-3-03
UDC: 621.396.69
Authors:

S.M. Lyshov – Assistant, 

Department «Design and production of radioelectronic means», RTU MIREA (Moscow)

E-mail: dmx_101@mail.ru

S.U. Uvaisov – Dr.Sc.(Eng.), Professor, 

Head of Department «Design and production of radioelectronic means», RTU MIREA (Moscow)

E-mail: uvajsov@mirea.ru

V.V. Chernoverskaya – Ph.D.(Eng.), Associate Professor, 

Department «Design and production of radioelectronic means», RTU MIREA (Moscow)

E-mail: v_chernoverskaya@mail.ru

Le Quoc Khanh Pham – Post-graduate Student, 

Department «Design and production of radioelectronic means», RTU MIREA (Moscow)

E-mail: khanhmtak45@gmail.com

Abstract:

The active development of the electronic industry, the expansion of the scope and functionality of the designed devices entail increased requirements for the quality and reliability of the created equipment. Among the common causes of defects in electronic devices are the following: changes in the stiffness of printed circuit boards for mounting electrical components, deformation of structural elements, cracks in structural elements, backlash in the mounting points, and the separation of harnesses and electrical components. Most of these defects can be detected by a method based on the analysis of the amplitude-frequency response. This method is reduced to comparing the characteristics of a serviceable device obtained as a result of simulation with the parameters of the tested electronic device obtained as a result of research. The disadvantage of this method is the dependence of the diagnostic result on the quality of the input test effect, which causes a spread of frequency characteristics corresponding to the serviceable technical condition.

The paper presents an engineering technique for vibration diagnostics of an on-board electronic device, which has become a development of the method discussed above and allows avoiding its disadvantages. The method is based on the analysis of resonant frequencies that are more stable than the amplitude-frequency response. The frequency values obtained during testing of an electronic node on a vibration stand are compared with the calculated data obtained as a result of modeling this node in a specialized engineering analysis environment.

The simulation of mechanical processes is carried out taking into account the permissible deviations of geometric and physicalmechanical parameters specified in the design documentation. Consideration of tolerances on the parameters of electronic means leads to deviation of resonance frequencies from the ideal, thus creating a tolerance of the resonant frequencies, then the procedure for filtering relative to the threshold used in the experimental setup the sensor.

The amplitude-frequency characteristics obtained during the experiment are processed and resonant frequencies are detected, which are compared with the field of tolerance of resonant frequencies. If one resonant frequency goes beyond the field of acceptable serviceability of the electronic device, a decision is made about the presence of a defect and the diagnostic process begins. As part of the current diagnostics, the defect is identified in a cyclical cycle across all tolerance fields from the defect database, which stores defects specific to this design type. Based on the results obtained, recommendations are made for the return of the onboard electronic device to a serviceable state. To calculate the intervals of resonant frequencies, the Monte Carlo method is used, which gives high accuracy of results and is easy to implement, taking into account the computational capabilities of modern hardware and software systems.

Pages: 17-28
References

 

  1. Tikhonov A.N., Uvaisov S.U., Ivanov I.A., Lyshov S.M. Kontseptsiya i metod diagnostirovaniya pechatnykh uzlov s ispolzovaniem vstroennykh emulyatorov vibratsionnykh kolebanii. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii. 2016. S. 144−154. (In Russian).
  2. Ivanov I.A., Koshelev N.A., Lyshov S.M., Uvaisov S.U. Inzhenepnaya metodika fopmipovaniya diagnosticheskikh testov dlya elektponnykh skhem. Matepialy Mezhdunap. nauchno-ppaktich. konf. «Innovatsii na osnove infopmatsionnykh i kommunikatsionnykh tekhnologii». Otv. ped. I.A. Ivanov, pod obshch. ped. S.U. Uvaisova, nauch. ped. A.N. Tikhonov. M.: MIEM NIU VShE. 2013. S. 495−498. (In Russian).
  3. Lyshov S.M., Ivanov I.A., Uvaisova A.S., Uvaisova S.S. Raschet razbrosov rezonansnykh chastot pechatnykh uzlov elektronnykh sredstv. Vestnik kibernetiki. 2018. № 4(32). (In Russian).
  4. Ivanov I.I., Naumova E.N. Analiz rezultatov modelirovaniya vibratsionnykh protsessov v razlichnykh SAPR. Matepialy Mezhdunap. nauchno-ppaktich. konf. «Innovatsii na osnove infopmatsionnykh i kommunikatsionnykh tekhnologii». Nauch. red. A.N. Tikhonov; obshch. ped. S.U. Uvaisov; otv. ped. I.A. Ivanov. M.: NIU VShE. 2018. S. 266−268. (In Russian).
  5. Luke Malpass SolidWorks 2009 API Advanced Product Development. 2009. 246 p.
  6. Lyshov M., Ivanov I.A., Uvaysov S.U., Chernoverskaya V.V. Vibration control of electronic means technical condition based on analysis of resonant frequencies. 2019 International Seminar on Electron Devices Design and Production (SED). Prague, Czech Republic. 2019. P. 1−4. URL = http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8798407&isnumber=8798378.
  7. Lyshov S.M., Ivanov I.A., Uvaisov S.U. Ekspepimentalnye issledovaniya vozmozhnosti vibpodiagnostiki appapatupy vstpoennymi istochnikami kolebanii. Matepialy Mezhdunap. nauchno-tekhnich. konf. «Innovatsii na osnove infopmatsionnykh i kommunikatsionnykh tekhnologii». Otv. ped. I.A. Ivanov, pod obshch. ped. S.U. Uvaisova. M.: MIEM NIU VShE. 2012. S. 272−274. (In Russian).
  8. Uvaisov R.I. Metod diagnostirovaniya defektov bortovykh radiotekhnicheskikh ustroistv: dis. … kand. tekhn. nauk. M.: MIEM. 2008. 157 s. (In Russian).
  9. Tumkovskii S.R., Uvaisov S.U., Inzhelliden S.B., Uvaisov R.I. Vibroakusticheskii metod diagnostirovaniya bortovoi elektronnoi apparatury na stadiyakh zhiznennogo tsikla. Kachestvo innovatsii obrazovanie. 2007. № 9(31). S. 51. (In Russian).
  10. Ivanov O.A., Lyshov S.M., Telichkan V.S., Uvaisov S.U. Obespechenie ustoichivosti opticheskoi sistemy posadki samoleta na palubu avianesushchego kopablya k vozdeistviyu akusticheskogo shuma. Kachestvo. Innovatsii. Obpazovanie. 2016. № 4. (In Russian).
  11. Ivanov I.A., Suleimanov S.P., Uvaisov R.I. Programmnyi kompleks diagnostirovaniya narushenii tselostnosti konstruktsii. Materialy nauchno-praktich. konf. «Innovatsii v usloviyakh razvitiya informatsionno-kommunikatsionnykh tekhnologii». Pod red. V.G. Domracheva, S.U. Uvaisova. M.: MIEM. 2007. S. 227−229. (In Russian).
  12. Kofanov Yu.N., Shalumov A.S., Zhuravskii V.G., Goldin V.V. Matematicheskoe modelirovanie radioelektronnykh sredstv pri mekhanicheskikh vozdeistviyakh. M.: Radio i svyaz. 2000. 226 s. (In Russian).
Date of receipt: 20 февраля 2020 г.