V.V. Sabelnikov – Ph.D.(Eng.), Associate Professor,
Bauman Moscow State Technical University
E-mail: smitr@mail.ru
T.M. Sabelnikova – Ph.D.(Eng.), Associate Professor,
Bauman Moscow State Technical University
E-mail: smitr@mail.ru
V.N. Goryacheva – Ph.D.(Chem.), Associate Professor,
Bauman Moscow State Technical University
E-mail: vanigor2009@jandex.ru
A new method for ultrasound treatment of infected wounds and a device for implementing the method [7] were developed in N.E. Bauman MSTU. This method is based on enhancing the cavitation bactericidal effect of low-frequency ultrasound on pathogenic microflora due to additional physicochemical factors: antiseptics of the oxidizing group [8], optimal heating of the sounded bacterial medium [9], and the application of external static pressure to the medium [10]. Together with surgeons of N.N. Burdenko Central Military Clinical Hospital the statement of work was drafted (SOW) to create an experimental installation for testing the proposed method in a clinical setting.
The device is made as a sealed chamber mounted on the patient’s body using bandagestraps. A waveguide of the acoustic unit is introduced into the chamber, after that a drug solution preheated to a temperature of 37…42°C is fed into the sounded cavity under a pressure of 0.05…0.15 MPa. According to the statement of work, the size of the treated wound should not exceed 40 mm, which corresponds to the diameters of the inlets of most gunshot wounds.
In the design of the installation chamber, a pressure sensor must be provided to fix the required value of generated pressure and a shut-off valve to supply a fixed amount of the drug solution. For clinical trials, it is recommended to use an ultrasound installation of the URSK-7N model, which provides a displacement amplitude of the waveguide end A = 40 μm and an oscillation frequency
f = 26.5 kHz [11].
Fig. 1 and 2 show the design and general view of the experimental installation for testing the proposed method of sounding infected wounds in a clinical setting. The created device is fully consistent with the statement of work.
- Abaev Yu.K. Spravochnik khirurga. Rany i ranevaya infektsiya. Rostov-na-Donu: Feniks. 2006. 427 s. (In Russian).
- Minchenko A. Rany. Lechenie i profilaktika oslozhnenii: Ucheb. posobie. SPb.: Spets. Lit. 2003. 310 s. (In Russian).
- Gostishchev V.K. Klinicheskaya operativnaya gnoinaya khirurgiya. M.: GEOTAR-Mediya. 2016. 448 s. (In Russian).
- Akopyan B.V., Ershov Yu.A. Osnovy vzaimodeistviya ultrazvuka s biologicheskimi obieektami: Ucheb. posobie. M.: Izd-vo MGTU im. N.E. Baumana. 2005. 224 s. (In Russian).
- Kiselev M.T., Minchenya V.G., Stepanenko D.A. Ultrazvuk v meditsine: Monografiya. Minsk: BNTU. 2009. 427 s. (In Russian).
- Physical Principles of Medical Ultrasonics. Ultrazvuk v meditsine. Fizicheskie osnovy primeneniya: Per. s angl.. Pod red. K. KHilla. M.: Fizmatlit. 2008. 542 s. (In Russian).
- Pat. RF № 2082467 ot 27.06.1997. Sposob ultrazvukovoi obrabotki infitsirovannykh ran i ustroistvo dlya ego osushchestvleniya. Sabelnikov V.V., Loshchilov V.I., Sabelnikova T.M. (In Russian).
- Sabelnikova T.M., Sabelnikov V.V., Goryacheva V.N. Intensifikatsiya khimicheskogo vozdeistviya nizkochastotnogo ultrazvuka na biologicheskie obieekty. Biomeditsinskaya radioelektronika. 2016 g. № 7. S. 79−84. (In Russian).
- Sabelnikova T.M., Sabelnikov V.V., Goryacheva V.N. Vliyanie temperatury ozvuchivaemogo rastvora na bakteritsidnuyu sposobnost nizkochastotnogo ultrazvuka. Naukoemkie tekhnologii. 2016. T. 17. № 11. S. 38−43. (In Russian).
- Sabelnikov V.V., Sabelnikova T.M., Goryacheva V.N. Vliyanie vneshnego staticheskogo davleniya na bakteritsidnuyu sposobnost nizkochastotnogo ultrazvuka. Naukoemkie tekhnologii. 2017. T. 18. № 5. S. 48−53. (In Russian).
- Sabelnikov V.V., Sabelnikova T.M., Goryacheva V.N. Issledovanie bakteritsidnoi sposobnosti nizkochastotnogo ultrazvuka pri izmenenii amplitudno-chastotnykh parametrov protsessa ozvuchivaniya. Naukoemkie tekhnologii. 2019. T. 20. № 5. S. 23−28. DOI: 10.18127/j19998465-201905-03. (In Russian).