350 rub
Journal Science Intensive Technologies №3 for 2017 г.
Article in number:
Laser ablation of alloys: physics of selective evaporation of the components
Authors:
A.F. Bunkin - Dr. Sc. (Phys.-Math.), Head of Expert Department, JSC «Concern «Morinsys-Agat» (Moscow) E-mail: abunkin@rambler.ru V.N. Lednev - Ph. D. (Phys.-Math.), Senior Research Scientist of GPI RAS (Moscow) E-mail: lednev@kapella.gpi.ru S.M. Pershin - Dr. Sc. (Phys.-Math.), Leading Specialist, JSC «Concern «Morinsys-Agat» (Moscow) E-mail: pershin@kapella.gpi.ru
Abstract:
Model of non-stoichiometry laser ablation was proposed and experimentally verified for multicomponent alloys. Disproportion between compositions of a laser plasma plume and a bulk sample was explained by selective evaporation of components during melting-evaporation stage. According proposed model different components need various energies for their evaporation. Proposed model allowed us to determine the correction coefficient for spectra and to determine accurately an elemental composition of bronze samples while it was not possible to obtain truthful results without correction. Different regimes of sampling (single and double pulse) were used for laser ablation of bronzes and in both cases selective evaporation was successfully corrected with proposed model. Aluminum alloys and high-alloy steel samples were used for model validation. Selective evaporation for laser ablation of aluminum alloys was observed to the less extent compared to brass samples. For high-alloy steel samples selective evaporation was absent. Proposed model of selective evaporation and correction procedure for laser plasma spectra allows one to analyze complex samples by calibration free laser induced breakdown spectroscopy without the use of certified materials.
Pages: 63-75
References

 

  1. Cremers D.A., Radziemski L.J. Handbook of Laser Induced Spectroscopy. N.Y.: Wiley. 2006. 300 p.
  2. Pulsed Laser Deposition of Thin Films / Eds. by D.B. Chrisey, G.K. Hubler. N.Y.: Wiley. 1994. 650 p.
  3. Prokhorov A.M., Konov V.I., Ursu I., Mikhehilesku I.N. Vzaimodejjstvie lazernogo izluchenija s metallami. M.: Nauka. 1988. 538 s.
  4. Goulielmakis E., Schultze M., Hofstetter M., Yakovlev V.S., Gagnon J., Uiberacker M., Aquila A.L., Gullikson E.M., Attwood D.T., Kienberger R., Krausz F., Kleineberg U. Single-cycle nonlinear optics // Science. 2008. V. 320. P. 1614−1617.
  5. Kuzjakov JU.JA., Lednev V.N., Alov N.V., Volkov I.O., Zorov N.B., Voronina R.D. Sintez plenok nitrida ugleroda metodom lazernojj abljacii v dvukhimpulsnom rezhime // Vestnik Mosk. Univ. KHimija. 2007. T. 48. S. 134.
  6. Nouvellon C., Chaleard C., Lacour J.L., Mauchien P. Stoichiometry study of laser produced plasma by optical emission spectroscopy // Appl. Surf. Sci. 1999. V. 138−139. P. 306−310.
  7. Colao F., Fantoni R., Lazic V., Caneve L., Giardini A., Spizzichino V. LIBS as a diagnostic tool during the laser cleaning of copper based alloys: Experimental results // J. Anal. At. Spectr. 2004. V. 19. P. 502−504.
  8. Ciussi A., Corsi M., Palleschi V., Rastelli S., Salvetti A., Tognoni E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy // Appl. Spectrosc. 1999. V. 53. № 8. P. 960−964.
  9. Tognoni E., Cristoforetti G., Legnaioli S., Palleschi V. Calibration-free laser-induced breakdown spectroscopy: State of the art // Spectrochim. Acta B. 2010. V. 64. № 1. P. 1−14.
  10. Ciucci A., Palleschi V., Rastelli S., Salvetti A., Singh D.P., Tognoni E. CF-LIBS: A new approachto LIPS spectra analysis // Laser Part. Beams. 1999. V. 17. P. 793−797.
  11. El Sherbini A.M., El Sherbini Th.M., Hegazy H., Cristoforetti G., Legnaioli S., Palleschi V., Pardini L., Salvetti A., Tognoni E. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements // Spectrochim. Acta B. 2005. V. 60. № 12. P. 1573−1579.
  12. Hahn D., Omenetto N. Laser induced breakdown spectroscopy (LIBS), Part I: Review of basic diagnostics and plasma-particle interactions: Still-Challenging issues within the analytical plasma community // Appl. Spectrosc. 2010. V. 64. P. 335A−366A.
  13. Dudragne L., Adam Ph., Amouroux J. Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air // Appl. Spectrosc. 1998. V. 52. № 10. P. 1321−1327.
  14. Bulajic D., Corsi M., Cristoforetti G., Legnaioli S., Palleschi V., Salvetti A., Tognoni E. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy // Spectrochim. Acta B. 2002. V. 57. P. 339−353.
  15. Corsi M., Cristoforetti G., Hidalgo M., Legnaioli S., Palleschi V., Salvetti A., Tognoni E., Vallebon C. Double pulse calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils // Appl. Geochem. 2006. V. 21. P. 748−755.
  16. Fornarini L., Colao F., Fantoni R., Lazic V., Spizzicchino V. Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach // Spectrochim. Acta B. 2005. V. 60. P. 1186−1201.
  17. Chan W.T., Russo R.E. Optical emission spectroscopy studies of the influence of laser ablated mass on dry inductively coupled plasma conditions // Spectrochim. Acta B. 1991. V. 46. P. 1471−1486.
  18. Borisov O.V., Mao X.L., Russo R.E. Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry // Spectrochim. Acta B. 2000. V. 55. P. 1693−1704.
  19. Popov A.M., Labutin T.A., Zorov N.B. Application of Laser-Induced Breakdown Spectrometry for analysis of environmental and industrial materials // Moscow Univ. Chem. Bull. 2009. V. 50. P. 453−467.
  20. Mao X., Chan W.T., Russo R.E. Influence of sample surface condition on chemical analysis using laser ablation inductively coupled plasma atomic emission spectroscopy // Appl. Spectrosc. 1997. V. 51. P. 1047−1054.
  21. Russo R.E., Mao X.L., Chan W.T., Bryant M.F., Kinard W.F. Laser ablation sampling with inductively coupled plasma atomic emission spectrometry for the analysis of prototypical glasses // J. Anal. At. Spectrom. 1995. V. 10. P. 295−301.
  22. Guillong M., Gunther D. Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry // J. Anal. At. Spectrom. 2002. V. 17. P. 831−837.
  23. Figg D., Kahr M.S. Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry // Appl. Spectrosc. 1997. V. 51. P. 1185−1192.
  24. Baldwin J.M. Q-switched laser sampling of copper-zinc alloys // Appl. Spectrosc. 1970. V. 24. P. 429−435.
  25. Russo R.E., Mao X.L., Liu C., Gonzalez J. Laser assisted plasma spectrochemistry: laser ablation // J. Anal. At. Spectrom. 2004. V. 19. P. 1084−1089.
  26. Liu C., Mao X.L., Mao S.S., Zeng X., Greif R., Russo R.E. Nanosecond and femtosecond laser ablation of brass: particulate and ICPMS measurements // Anal. Chem. 2004. V. 76. P. 379−383.
  27. Russo R.E., Mao X., Gonzalez J.J., Mao S.S. Femtosecond laser ablation ICP-MS // J. Anal. At. Spectrom. 2002. V. 17. P. 1072−1075.
  28. Pershin S.M., Colao F. Laser plasma emission spectrum corrected for the quantitative analysis of alloys // Tech. Phys. Lett. 2005. V. 31. № 9. P. 741−745.
  29. Lednev V.N., Pershin S.M. Plasma stoichiometry correction method in laser-induced breakdown spectroscopy // Laser Phys. 2008. V. 18. P. 1−5.
  30. Pershin S.M., Colao F., Spizzichino V. Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): a new approach, model, and experiment // Laser Phys. 2006. V. 16. № 3. P. 455−467.
  31. Geertsen C., Briand A., Chartier F., Lacour J.-L., Mauchien P., Sjostrom S.,Mermet J.-M. Comparison between infrared and ultraviolet laser ablation at atmospheric pressure - implications for solid sampling inductively coupled plasma spectrometry // J. Anal. At. Spectrom. 1994. V. 9. P. 17−22.
  32. Zeldovich JA.B., Landau L.D. O sootnoshenii mezhdu zhidkim i gazoobraznym sostojaniem u metallov // ZHEHTF. 1944. T. 14. S. 32.
  33. Xu X., Song K. Interface kinetics during pulsed laser ablation // Appl. Phys. A. 1999. V. 69. P. S869−S873.
  34. Kikion I.K., Senchenkov A.P. EHlektroprovodnost i uravnenie sostojanija rtuti v oblasti temperatur 0−2000 i oblasti davlenijj 200−5000 atmosfer // Fiz. Met. Metalloved. 1967. T. 24. S. 843−858.
  35. Prohorov A.M., Batanov V.A., Bunkin F.V., Fedorov V.B. Metal evaporation under powerful optical radiation // IEEE J. Quantum Electron. 1973. V. 9. № 5. P. 503−510.
  36. Fishburn J.M., Withford M.J., Coutts D.W., Piper J.A. Method for determination of the volume of material ejected as molten droplets during visible nanosecond ablation // Appl. Opt. 2004. V. 43. P. 6473−6476.
  37. Aguilera J.A., Aragon C., Cristoforetti G., Tognoni E. Application of calibration-free laser-induced breakdown spectroscopy to radially // Spectrochim. Acta B. 2009. V. 64. P. 685−689.
  38. Bulajic D., Corsi M., Cristoforetti G., Legnaioli S., Palleschi V., Salvetti A., Tognoni E. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy // Spectrochim. Acta B. 2002. V. 57. P. 339−353.
  39. Aragon C., Aguilera J.A. Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods // Spectrochim. Acta B. 2008. V. 63. P. 893−916.
  40. Griem H.R. Plasma Spectroscopy. London: McGraw-Hill. 1964. 581 p.
  41. Colao F., Lazic V., Fantoni R., Pershin S. A comparison of single and dual pulse laser-induced breakdown spectroscopy of aluminum samples // Spectrochim. Acta B. 2002. V. 57. P. 1167−1179.
  42. Arumov G., Bukharov A., Kamenskaja O., Kotjanin S., Krivoshhekov V., Ljash A., Nekhaenko V., Pershin S. Vlijanie rezhima obluchenija na poverkhnosti na spektr svechenija lazernojj plazmy // Pisma v ZHTF. 1987. T. 13. № 14. S. 870−871.
  43. Pershin S.M. Fizicheskijj mekhanizm podavlenija svechenija atmosfernykh gazov v plazme pri dvukhimpulsnom obluchenii poverkhnosti // Kvantovaja ehlektronika. 1989. T. 16. S. 2518−2520.
  44. Salle B., Lacour J.-L., Mauchien P., Fichet P., Maurice S., Manhes G. Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere // Spectrochim. Acta B. 2006. V. 61. P. 301−313.
  45. ESA-s homepage for the AURORA ExoMars mission: www.esa.int/SPECIALS/Aurora/SEM1NVZKQAD_0.html.