350 rub
Journal Science Intensive Technologies №1 for 2017 г.
Article in number:
Electrodynamic selective filters condensed matter
Keywords:
electrodynamics of condensed matter
the general theory of electricity
molecular selective filter
a macroscopic dipole moment
the ionic strength of the solution
electrometry
Authors:
V.V. Leonov - Ph. D. (Biol.), Head of the Department of electrochemical research laboratory «Physical-chemical mechanics», Institute of Mechanics Ufa Scientific Center of RAS
E-mail: ivi9090@mail.ru
O.A. Denisova - Dr. Sc. (Phys.-Math.), Associate Professor, Professor, Department «Management and service in technical systems», Ufa State Petroleum Technological University
E-mail: denisovaolga@bk.ru
Abstract:
Considered practically significant consequences of Maxwell\'s equations for material condensed matter (macroscopic electrodynamics of continuous media). Operation shown in condensed physicochemical systems virtual molecular sieve high degree of selectivity.
The theoretical foundations of the electrodynamics of the transport processes in condensed matter with external technological impact on them in order to change the macroscopic properties of molecular systems. The problems of detecting movement of a minimum amount of material in the practice of determining the mass transfer in the process of diffusion, adsorption, capillary filtration, absorption of light by matter.
As part of the electrodynamic approach is positioned in a dedicated operation macroscopic volume of Condensed Matter virtual high selectivity filter supramolecular level of organization, the properties of which are associated with macroscopic electrodynamics space charge density, distributed in the sample medium. Electrodynamic filter effects allow to quantify features of physical and chemical analysis of real condensed systems technologies.
The findings serve as a basis to improve the way electrometric control of liquid and gaseous natural and man-made environments unspecified qualitative and quantitative composition.
Instrumental determination of parameters of condensed media is one of the most urgent tasks of the development of technologies. Relations between the measured values (pressure, amount of substance, the speed of the medium) are formalized within the phe-nomenological (mathematical) relations hydrodynamics, thermodynamics and macrokinetics.
The macroscopic molecular systems of measurement principles are unambiguous within the scope of stationary field of macroscopic environment unit. The implementation of the principles of electromagnetic measurement involves the use of technical devices with a power filter function, performing the selection process (selection) of the analyzed components of condensed matter within the allocated frequency band interaction.
The purpose of this message - electrodynamic justification of macroscopic measurements in condensed matter, in which the operation is considered to have a high selectivity filter virtual supramolecular level of organization.
Considered the phenomenon of selective media associated with the phenomenon of mass transfer of viscous flow of condensed matter and real in liquids and gases. In the interval of the space-charge density (the wave vector of the system of charges), an electro-filter has a very high selectivity. The detection limit of the number of changes of substance and the resolution of the filter capacity is a single atomic molecular system (molecule). The structure of the space-charge field characterizes the macroscopic total dipole moment P (vector electric moment), the properties of which are unique. That they all externally defined set of observed macroscopic properties of the body (the volume of the medium). Thus, the physical and mechanical (process) parameters of real condensed matter - hardness, toughness, elasticity, strength of materials, strength values can be expressed by integrating the pressure and the associated mechanical moment of the medium, whose work is directed against external influences.
The real structure of a discrete charge distribution and the reality of the «point of application» forces of electromagnetic interaction, the amount of material theoretically detectable «filter», occupies a volume which is proportional to the cube of the radius of the electron. The practical range of the «work» of such «electrical measuring» system in condensed matter averaged over the value of the characteristic relaxation time (Brownian environment) to determine the parameters of the Debye. Molecular Bernoulli statistics, Gauss, Maxwell and Boltzmann fully meet the analytical aspects of the application of macroscopic electrodynamics with respect to liquids and gases. The dimension of the Debye parameter and is a practical limit of sensitivity and resolution of molecular filters.
Thus, liquid and gaseous bodies (condensed matter) operates a virtual electrodynamic filter actually performing «selection» of com-ponents of a molecular system. The high selectivity of the filter to determine the properties of the electromagnetic field localized in a selected volume of the medium.
Pages: 19-31
References
- Voroncov JU.I. Teorija i metody makroskopicheskikh izmerenijj. M.: Nauka. 1989. 280 s.
- Rid R., Prausnic Dzh., SHervud T. Svojjstva gazov i zhidkostejj: Spravochnoe posobie. L.: KHimija. 1982. 592 s.
- Landau L.D., Lifshic E.M. Gidrodinamika. M.: Nauka. 2003. 632 s.
- Landau L.D., Lifshic E.M. Statisticheskaja fizika. CH. 1. M.: Nauka. 2008. 584 s.
- Gladyshev G.P. Termodinamika i makrokinetika prirodnykh ierarkhicheskikh processov. M.: Nauka. 1988. 289 s.
- Stromberg A.G., Semchenko D.P. Fizicheskaja khimija. M.: Vysshaja shkola. 2001. 527 s.
- Frenkel JA.I. Kineticheskaja teorija zhidkostejj. M.: Nauka. 1973. 385 s.
- Zakharov EH.M. Termodinamika neobratimykh processov. M.: Nauka. 1992. 185 c.
- Tevtul JA.JU. Termodinamika neobratimykh processov. M.: Nauka. 1992. 194 c.
- Denisova O.A. Turbulentnyjj rezhim techenija zhidkikh kristallov pri dejjstvii garmonicheskogo sdviga // Nauchnoe obozrenie. 2013. № 1. S. 34−36.
- Leonov V.V. EHlektrometricheskoe opredelenie tekhnologicheskikh kharakteristik poristykh sred metodom koncentracionnykh cepejj // KHimicheskaja tekhnologija. 2011. № 4. S. 127−135.
- Leonov V.V., Dolomatov M.JU., Ismagilov T.A. EHlektrodinamika processov adsorbcii v kondensirovannykh sredakh // Inzhenerno-fizicheskijj zhurnal. 2013. № 1. S. 168−172.
- Leonov V.V. EHlektrodinamika diffuzii v kondensirovannykh fiziko-khimicheskikh sistemakh // Inzhenerno-fizicheskijj zhurnal. 2014. T. 87. № 2. S. 265−271.
- Leonov V.V., Denisova O.A. ehlektrodinamika sdvigovogo dejjstvija i realizacija rezhima turbulentnosti v kondensirovannykh sredakh // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2015. T. 11. № 2. S. 90−97.
- Leonov V.V., Denisova O.A., Ragulin V.V., EHlektrodinamika korrozionnogo massoperenosa v kondensirovannykh sredakh // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2015. T. 11. № 3. S. 105−112.
- Leonov V.V., Denisova O.A. EHlektrodinamika vjazkogo techenija kondensirovannykh sred // Naukoemkie tekhnologii. 2016. T. 17. № 2. S. 37−46.
- Landau L.D., Lifshic E.M. Mekhanika. M.: Nauka. 2002. 512 s.
- Boum A. Kvantovaja mekhanika: osnovy i prilozhenie. M.: Mir. 1990. 720 s.
- Bronshtejjn I.N., Semendjaev K.A. Spravochnik po matematike dlja inzhenerov i uchashhikhsja vtuzov. M.: Nauka. 1986. 544 s.
- Korn G., Korn T., Spravochnik po matematike dlja nauchnykh rabotnikov i inzhenerov. M.: Nauka. 1977. 832 s.
- Sobolev S.L. Uravnenija matematicheskojj fiziki. M.: Nauka. 1992. 432 s.
- Tamm I.E. Osnovy teorii ehlektrichestva. M.: Nauka. 1966. 624 s.
- Landau L.D., Lifshic E.M. Teorija polja. M.: Nauka. 2004. 512 s.
- Landau L.D., Lifshic E.M. EHlektrodinamika sploshnykh sred. M.: Nauka. 2005. 632 s.
- Rabinovich M.I., Trubeckov D.I. Vvedenie v teoriju kolebanijj i voln. M.: Nauka. 1992. 456 s.
- Gurvich L.V., Karachevcev G.V., Kondratev V.N. EHnergii razryva khimicheskikh svjazejj. Potencialy ionizacii i srodstvo k ehlektronu. M.: Nauka. 1974. 351 s.
- Salem R.R. Teoreticheskaja ehlektrokhimija. M.: Vuzovskaja kniga. 2001. 328 s.
- CHebotin V.N. Fizicheskaja khimija tverdogo tela. M.: KHimija. 1982. 320 s.
- JAvorskijj B.M., Detlaf A.A. Spravochnik po fizike. M.: Nauka. 1980. 512 s.
- Dobosh D. EHlektrokhimicheskie konstanty: Spravochnik dlja ehlektrokhimikov. M.: Mir. 1980. 365 s.