350 rub
Journal Science Intensive Technologies №8 for 2016 г.
Article in number:
Comparative analysis of the methods for determining the signal delay in the ionosphere
Authors:
Y.L. Fateev - Dr. Sc. (Eng.), Associate Professor, Professor, Siberian Federal University (Krasnoyarsk). E-mail: fateev_yury@inbox.ru A.S. Kurnosov - Post-graduate Student, Siberian Federal University (Krasnoyarsk). E-mail: kurnosov89@gmail.com
Abstract:
The article describes the single-frequency method for determination of vertical ionospheric signal delay. The single-frequency method is based on the single-layer model of the ionosphere. Therefore, it assumed that the ionospheric signal delay in radio visibility zone for each satellite are the same. To verify the functionality of the single-frequency method was created the single-frequency algorithm for determination of vertical ionospheric signal delay. The single-frequency algorithm is based on the increment code and phase pseudorange at the carrier frequency. Using the increments of measurements allows to determine signal delay without compensation of instrumental delays and ambiguities without permission. At short intervals, noise error will exceed the useful signal. To exclude this deficiency it is necessary to accumulate measurements. The single-frequency method is realized in real time. To decrease the amount of storage space, the algorithm uses cumulative sum. Interval accumulation is chosen by minimizing of the random error and immutability of trend vertical signal delay in the ionosphere. The article considered the following approaches to determine the signal delay in the ionosphere: the single-frequency method, the dual-frequency code method, Klobuchar model, global ionospheric maps and empirical model IRI. There was a comparative analysis of the existing methods and on the basis of experiments it was concluded that the single-frequency method allows to determine the signal delay in the ionosphere with accuracy higher than the accuracy of the methods.
Pages: 44-47
References

 

  1. Interface Control Document (ICD-GPS-200). Rev. S. 12 April 2000. 138 p.
  2. Klobuchar J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users // IEEE Transactions on Aerospace and Electronic Systems. 1987. V. AES-23. № 3. P. 325−331.
  3. Hernández-Pajares M. The IGS VTEC maps: a reliable source of ionospheric information since // J. Geod. 2009. V. 83. P. 263−275.
  4. Mannucci A.J., Wilson B.D., Yuan D.N., Ho C.M., Lindqwister U.J., Runge T.F. A global mapping technique for GPS derived ionosphere TEC measurements // Radio Sci. 1998. V. 33. № 3. P. 565−582.
  5. Bilitza D., McKinnell L.-A., Reinisch B., Fuller-Rowell T. The International Reference Ionosphere (IRI) today and in the future. Journal of Geodesy. 2011. V. 85. P. 909−920.
  6. Bilitza D., Reinisch B. International Reference Ionosphere 2007: Improvements and new parameters // J. Adv. Space Res. 2008. V. 42. № 4. P. 599−609.
  7. Kurnosov A.S., Fateev JU.L. Modelirovanie odnochastotnogo metoda opredelenija vertikalnojj zaderzhki signala v ionosfere // Vestnik Sibirskogo gosudarstvennogo aehrokosmicheskogo universiteta imeni akademika M.F. Reshetneva. 2015. T. 16. № 1. S. 91−96.
  8. Kurnosov A.S. The single-frequency algorithm of determining ionospheric // 2015 International Siberian Conference on Control and Communications (SIBCON). Omsk. 2015. P. 1−4.
  9. Schaer S., Gurtner W., Feltens J. IONEX: The Ionosphere Map EXchange Format Version 1 // Proceedings IGS AC Workshop. Darmstadt. Germany. 1998. P. 233−247.
  10. Dannye mezhdunar. centra sbora i obrabotki dannykh GNSS v formate RINEX (Scripps Orbit and Permanent Array Center) [EHlektronnyjj resurs]. URL = ftp://garner.ucsd.edu/pub/rinex/2015/ (20.01.2016).
  11. International Reference Ionosphere [EHlektronnyjj resurs]. URL = http://iri.gsfc.nasa.gov/ (20.01.2016).
  12. Dannye globalnykh ionosfernykh kart [EHlektronnyjj resurs]. URL = ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/ (20.01.2016).