350 rub
Journal Science Intensive Technologies №4 for 2016 г.
Article in number:
The application of principle electrodynamic similarity and special materials for reducing the size emitter
Authors:
A.S. Godin - Engineer, JSC «RPC «LEMZ» (Moscow). E-mail: andrey.godin@gmail.com M.S. Matsayan - Engineer, JSC «RPC «LEMZ» (Moscow). E-mail: mik7379@gmail.com D.S. Gezha - Head of Department, LLC «Metriktest» (Moscow). E-mail: dmitry.gez@gmail.com K.N. Klimov - Dr. Sc. (Eng.), Leading Research Scientist, JSC «RPC «LEMZ» (Moscow), Professor, MIEM HSE (Moscow). E-mail: const0@mail.ru
Abstract:
Principle of electrodynamic similarity is widely used in the design of ultra-wideband antennas [1−2]. This principle also applies when it is necessary to translate the existing structure in a different frequency range [3]. Demonstrate the possibility of applying the principle of electrodynamic similarity, to reduce the size of emitters, reducing the wavelength without changing the frequency range. This can be achieved by placing the Emitter per ball of material in which the permittivity and permeability increased in N times. The geometry of the emitter is also reduced by in N times [4−8]. If we combine the phase center of the emitter with the center of the ball from the material, it can be expected that the radiation pattern will not change. Because we have chosen a material having a dielectric permittivity and magnetic permeability in N times greater than that of a vacuum, then from the boundary of the material with the vacuum will not occur reflected propagating wave. Around the emitter in addition to the spherical propagating wave exist waves higher (nonpropagating) types. Therefore it is necessary to explore the question of what should be the radius of the sphere from the material chosen to not change the frequency response of VSWR and radiation pattern of the emitter [4−5]. As an example, consider a the gap in metal which is fed on rectangular metallic waveguide.
Pages: 3-13
References

 

  1. Markov G.T., Sazonov A.M. Antenny. M.: EHnergija. 1975. S. 528.
  2. Baskakov S.I. Osnovy ehlektrodinamiki. M.: Sov. radio. 1973. S. 248.
  3. Klimov K.N., Gezha D.S., Firsov-SHibaev D.O. Prakticheskoe primenenie ehlektrodinamicheskogo modelirovanija. Germanija. LAPLambertAcademicPublishing. 2012. S. 205.
  4. Wheeler H.A. Fundamental Limitations of Small Antennas. Proc. IRE. V. 35. P. 1479−1484. 1947.
  5. Chu L.J. Physical Limitations of Omni-Directional Antennas. J. Appl. Phys., V. 19. P. 1163−1175. 1948.
  6. Wang J.H. Johnson. Ultra-wideband miniaturized omnidirectional antennas via multi-mode three-dimensional (3-d) traveling-wave (tw). PatentUS20120256799. 11 Oct, 2012.
  7. Nathan Cohen. Fractal antennas and fractal resonators. PatentUS7256751 B2. 14 Aug 2007.
  8. Kuchenko JU. Antenny dlja mobilnykh primenenijj: itogi budushhego // Kompjuternoe obozrenie. № 13. 2010. URL: http://ko.com.ua/antenny_dlya_mobilnyh_primenenij_itogi_budushhego_49146 (Data obrashhenija 30.07.2014).
  9. Bankov S.E., Kurushin A.A. Proektirovanie SVCH ustrojjstv i antenn s AnsoftHFSS // Radioehlektronika. 2009. S. 244. URL: http://jre.cplire.ru/win/library/7/text.pdf (Data obrashhenija 26.05.2014).
  10. ZHeksenov M.A., Petrov A.S. Konformnye antennye reshetki s izluchateljami EH3M3 // REH. 2014. T. 59. № 5. S. 467.
  11. Savelev I.V. Kurs obshhejj fiziki. T. 2. M.: Nauka. 1982. S. 496.