350 rub
Journal Science Intensive Technologies №2 for 2016 г.
Article in number:
Electrodynamics viscous flow condensed matter
Authors:
V.V. Leonov - Ph. D. (Biol.), Head of Sector, Institute of Mechanics Ufa Scientific Center of RAS. E-mail: ivi9090@mail.ru O.A. Denisova - Dr. Sc. (Phys.-Math.), Associate Professor, Ufa State Petroleum Technological University. E-mail: denisovaolga@bk.ru
Abstract:
Actual problems of hydrodynamic and rheological approach to solving technological problems impact on the condensed physicochemical system. Presented electrodynamic approach to the theoretical consideration of known empirical relationships for mass transfer in viscous flow of condensed matter. Mechanics and Mathematics of building expanded and deepened considerably methodology electrodynamics, the use of which contributes to the identification of the influence on the technological properties of the physical chemistry of condensed systems. The basis of electrodynamic approach is setting boundary value problems with a transition type solutions, linking technological parameters studied macroscopic bodies with the macroscopic electromagnetic field of their internal matter. The approach would greatly to combine the known methods of chemical engineering, statistical physics and thermodynamics to mechanics and mathematical description of the phenomena of condensed matter. The purpose of this message is given electrodynamic aspects of the actual mechanics of condensed matter. Relations mechanics and thermodynamics environment can be interpreted and replaced electrodynamic relations within the transitional solutions boundary problems of the theory of the field. Conducted using electrodynamic approaches the theoretical analysis of the known equations of motion allows a correct formulation of the joint boundary value problems of hydrodynamics and the theory of electricity for condensed matter at various modes of travel. Relations for the establish the equivalence of the Hamiltonian equations of motion and the field, with the addition of real scalar field temperatures. The results determine the possibility of improving the direct and indirect electrometry properties of molecular systems.
Pages: 37-46
References

 

  1. Landau L.D., Lifshic E.M. Gidrodinamika. M.: Nauka. 2003. 632 s.
  2. Rabinovich M.I., Trubeckov D.I. Vvedenie v teoriju kolebanijj i voln. M.: Nauka. 1992. 456 s.
  3. Fejjnman R., Lejjton R., Sehnds M. Fejjnmanovskie lekcii po fizike. Zadachi i uprazhnenija s otvetami i reshenijami. M.: Nauka. 1978. 543 s.
  4. Bronshtejjn I.N., Semendjaev K.A. Spravochnik po matematike dlja inzhenerov i uchashhikhsja vtuzov. M.: Nauka. 1986. 544 s.
  5. Korn G., Korn T. Spravochnik po matematike dlja nauchnykh rabotnikov i inzhenerov. M.: Nauka. 1977. 832 s.
  6. Sobolev S.L. Uravnenija matematicheskojj fiziki. M.: Nauka. 1992. 432 s.
  7. Boum A. Kvantovaja mekhanika: osnovy i prilozhenie / Per. s angl. M.: Mir. 1990. 720 s.
  8. Landau L.D., Lifshic E.M. Statisticheskaja fizika. CH. 1. M.: Nauka. 2008. 584 s.
  9. Rid R., Prausnic Dzh., SHervud T. Svojjstva gazov i zhidkostejj: Spravochnoe posobie / Per. s angl. pod red. B.I. Sokolova. Izd. 3‑e, pererab. i dop. L.: KHimija. 1982. 592 s. (Nju-JJork. 1977).
  10. Dukhin S.S. EHlektroprovodnost i ehlektricheskie svojjstva dispersnykh sistem. Kiev: Naukova dumka. 1975. 246 s.
  11. Salem R.R. Teoreticheskaja ehlektrokhimija. M.: Vuzovskaja kniga. 2001. 328 s.
  12. Denisova O.A. Turbulentnyjj rezhim techenija zhidkikh kristallov pri dejjstvii garmonicheskogo sdviga // Nauchnoe obozrenie. 2013. № 1. S. 34−36.
  13. Voroncov JU.I. Teorija i metody makroskopicheskikh izmerenijj // Pod red. V.B. Braginskogo. M.: Nauka. 1989. 280 s.
  14. Dobosh D. EHlektrokhimicheskie konstanty. Spravochnik dlja ehlektrokhimikov. M.: Mir. 1980. 365 s.
  15. Dolomatov M.JU., Leonov V.V. Vzaimosvjaz ehnergii aktivacii vjazkogo techenija njutonovskikh uglevodorodnykh sred i integralnykh kharakteristik ikh ehlektronnykh spektrov pogloshhenija v vidimojj i UF-oblasti // Izvestija VUZov. Povolzhskijj region. Ser. Fiziko-matematicheskaja. 2010. № 4. S. 141−149.
  16. Leonov V.V. EHlektrodinamika diffuzii v kondensirovannykh fiziko-khimicheskikh sistemakh // Inzhenerno-fizicheskijj zhurnal. 2014. T. 87. № 2. S. 265−271.
  17. Leonov V.V., Dolomatov M.JU. EHlektrometricheskoe opredelenie dinamicheskojj vjazkosti njutonovskikh zhidkostejj // Naukoemkie tekhnologii. 2011. № 3. S. 36−43.
  18. Leonov V.V., Dolomatov M.JU., Ragulin V.V., Daminov A.A. EHlektrodiffuzionnaja zadacha Landau i prjamoe ehlektrometricheskoe opredelenie korrozionnogo massoperenosa // Naukoemkie tekhnologii. 2011. № 3. S. 44−53.
  19. Leonov V.V., Denisova O.A. EHlektrodinamika sdvigovogo dejjstvija i realizacija rezhima turbulentnosti v kondensirovannykh sredakh // EHlektrotekhnicheskie i informacionnye kompleksy i sistemy. 2015. № 2. T. 11. S. 90−97.
  20. Leonov V.V. EHlektrodinamika fenomenov fizikokhimii kondensirovannykh sred. Kraevye zadachi i perekhodnye reshenija. Kurs lekcijj. Saarbrücken (Germanija): LAPLambertAcademicPublishing. 2014. 144 s.
  21. Landau L.D., Lifshic E.M. Mekhanika. M.: Nauka. 2002. 512 s.
  22. Landau L.D., Lifshic E.M. Teorija polja. M.: Nauka. 2004. 512 s.
  23. Tamm.˙I.E. Osnovy teorii ehlektrichestva. M.: Nauka. 1966. 624 s.
  24. JAvorskijj B.M., Detlaf A.A. Spravochnik po fizike. M.: Nauka. 1980. 512 s.
  25. Landau L.D., Lifshic E.M. EHlektrodinamika sploshnykh sred. M.: Nauka. 2005. 632 s.