350 rub
Journal Science Intensive Technologies №9 for 2015 г.
Article in number:
Effective electrodes with nanocoating for compact device
Authors:
S.A. Loskutov - Ph.D. (Eng.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: loskutov@bmstu-kaluga.ru D.K. Nikiforov - Ph.D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: dm_nikif@rambler.ru N.I. Pchelintseva - Ph.D. (Eng.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: pchelintseva.n@yandex.ru M.G. Chistyakov - Student, Bauman Moscow State Technical University. E-mail: fn2kf@list.ru
Abstract:
Tiny electrodes are created on the basis of multilayer nanostructures, it is in high demand in the vacuum and discharge devices. A disadvantage of today\'s manufacturing technologies is that they are manufactured individually, and this leads to the fact that their physical properties are different, albeit slightly, from product to product. This is unacceptable in precision instruments and systems. Requires nanolayers (nanofilms) applied in the same technological environments. This technology is so far created. A cassette film deposition technology on the inner surfaces of the cylindrical cavities in small glass electrode devices placed on specialized High vacuum exhaust positions is described and implemented. As an example of the effectiveness of this technology described methods of producing hollow film electrodes for helium-neon and molecular (CO2) gas-discharge lasers miniature sensors systems, navigation and environmental monitoring. A feature of the device is that using a diode sputtering in vacuum, argon, neon and nitrogen is provided by spraying beryllium, aluminum or zirconium target receiving both metal oxide and nitride or other coatings on the surfaces of the hollow electrodes. Thanks to the post on an exhaust gas inlet a system precision and units of permanent magnets SmCo-controlled stepper motors, the tape substrates could perform both circular and longitudinal movement in glass devices. In addition, the distance «anode-cathode» in the diode system has been able to change with them at the behest of the operator-researcher.
Pages: 51-55
References

 

  1. Privalov V.E., Fotiadi A.E., SHemanin V.G. Lazery i ehkologicheskijj monitoring atmosfery. SPb.: Lan. 2013. 288 s.
  2. Nikiforov D.K., Korzhavyjj A.P., Nikiforov K.G. EHmittirujushhie nanostruktury «metall - oksid metalla»: fizika i primenenie / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.EH. Baumana. 2009. 156 s.
  3. Russkijj otvet: kak nashi uchenye uchilis preodolevat zapadnye sankcii // Gorizonty. 2015. № 5. S. 16−17.
  4. Patent RF № 2175804 ot 18.05.2000. BI № 31. Gazovyjj lazer na tlejushhem razrjade / Korzhavyjj A.P., Fomichev A.A., CHistjakov G.A.i dr.
  5. Kozmin G.V., Zejjnalov A.A., Korzhavyjj A.P.i dr. Primenenie ionizirujushhego i neionizirujushhego izluchenija v agrobiotekhnologijakh / Pod obshh. red. G.V. Kozmina. Obninsk: VNIISKHRAEH. 2013. 191 s.
  6. Korzhavyjj A.P., Kapustin V.I., Kozmin G.V. Metody ehksperimentalnojj fiziki v izbrannykh tekhnologijakh zashhity prirody i cheloveka / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.EH. Baumana. 2012. 352 s.
  7. Marin V.P., ZHdanov S.M., Pchelinceva N.I. Osnovnye fizicheskie processy, ispolzuemye v tekhnike obespechenija vysokojj dolgovechnosti malogabaritnykh lazerov na khimicheskie aktivnykh sredakh // Naukoemkie tekhnologii. 2009. T. 10. № 11. S. 49−56.
  8. Tekhnologija tonkikh plenok. Spravochnik / Pod red. L. Majjsella, R. Glenga, per. s angl., T. 1. M.: Sov. radio. 1977. 700 s.
  9. Tekhnologija tonkikh plenok. Spravochnik / Pod red. L. Majjsella, R. Glenga, per. s angl., T. 2. M.: Sov. radio. 1977. 768 s.
  10. Ocherki istorii rossijjskojj ehlektroniki. Vyp. 1 / Pod red. V.M. Prolejjko. M.: Tekhnosfera. 2009. S. 177−210.
  11. Arcykhovich V.F., Korzhavyjj A.P., Kristja V.I. Programma dlja rascheta raspylenija katoda v SO2-smesi / Tezisy dokladov Vsesojuznojj nauchno-tekhnich. konf. «Avtomatizacija issledovanija, proektirovanija i ispytanijj slozhnykh tekhnicheskikh sistem». Kaluga:Izd-vo KF MGTU im. N.EH. Baumana. 1989. S. 50−51.
  12. Nejjn CHan. Plenochnye kholodnye katody dlja sovremennykh gelijj-neonovykh lazerov // Naukoemkie tekhnologii. 2015. T. 13. № 10. S. 26−30.
  13. Korzhavyjj A.P., Marin V.P., Sigov A.S. Nekotorye aspekty sozdanija tekhnologijj i konstrukcijj izdelijj kvantovojj ehlektroniki // Naukoemkie tekhnologii. 2002. T. 3. № 4. S. 20−31.
  14. Bondarenko G.G., Bazhin A.I., Korzhavyjj A.P., Kristja V.I., Aitov R.D. Opredelenie potenciala diehlektricheskogo sloja na misheni, bombardiruemojj ionnym puchkom // ZHurnal tekhnicheskojj fiziki. 1998. T. 68. № 9. S. 126−128.
  15. Bondarenko G.G., Korzhavyjj A.P. Ionno-plazmennoe napylenie aljuminievykh i berillievykh pokrytijj na vnutrennie poverkhnosti polykh cilindricheskikh katodov // Metally. 1995. № 4. S. 167−171.
  16. Korzhavyjj A.P., Kristja V.I. O raspredelenii potenciala v katodnom sloe tlejushhego razrjada // ZHurnal tekhnicheskojj fiziki. 1993. T. 63. № 2. S. 200−207.
  17. Sukhovskijj V.N., Korzhavyjj A.P., Kochurikhin V.E. Nitridy perekhodnykh metallov - perspektivnye materialy dlja dolgovechnykh plenochnykh katodov // EHlektronnaja tekhnika. Serija 6: Materialy. 1989. № 6. S. 70−73.
  18. Korzhavyjj A.P., Prolejjko EH.P., Fajjfer S.I. KHolodnye katody dlja GRP // EHlektronnaja promyshlennost. 1973. № 4. S. 23−24.