350 rub
Journal Science Intensive Technologies №9 for 2015 г.
Article in number:
Methodology for calculating the strength characteristics of composites
Authors:
Yu.S. Belov - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: ybs82@mail.ru S.A. Ginzgeimer - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: ginzgeymer@mail.ru M.B. Loginova - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: loginovamb@gmail.com A.V. Ponomarev - Post-graduate Student, Kaluga branch of the Bauman MSTU. E-mail: palex@mail.ru S.V. Rybkin - Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU. E-mail: sr@kaluga.net S.G. Gurov - Student, Kaluga branch of the Bauman MSTU. E-mail: gurovSG@gmail.com
Abstract:
It is discussed the main physical and chemical characteristics of polyimides. Prospects of development of constructional materials on the basis of the aromatic poliimid reinforced by filamentary diamond crystals are considered. The basic characteristics of the filamentary diamond crystals are provided. A mathematical model is developed for the calculation of the strength characteristics of composite reinforced materials. Calculations of the key physical parameters of a composite are given: the weight of the composite, fiber and matrix. The analytical expressions to calculate the stiffness of composite materials reinforced with uniform properties of fiber and matrix in the longitudinal and cross loading are received. The analysis of dependences of values of the longitudinal and cross module Young's modulus of the volume fraction of filamentary crystals in the composite material. It is shown that the values of Young's modulus in the longitudinal loading have a linear relationship, while at cross loading at first weak linear growth, and then sharp exponential increase.
Pages: 13-19
References

 

  1. Bjuller K.-U. Teplo- i termostojjkie polimery / Pod red. JA.S. Vygodskogo. M.: KHimija. 1984. 1056 s.
  2. Sroog C.E. Polyimides // Progress in Polymer Science. 1991. V. 16. P. 561−584.
  3. Li G., Stoffi D., Nevill K. Novye linejjnye polimery. M.: Nauka. 1992. 280 s.
  4. Ellison C.J., Mundra M.K., Torkelson J.M. Impacts of Polystyrene Molecular Weight and Modification to the Repeat Unit Structure on the Glass Transition-Nanoconfinement Effect and the Cooperativity Length Scale // Macromolecules.2005. V. 38. P. 1767−1775.
  5. Kalakkunnath S., Kalika D.S., Lin H., Raharjo R.D., Freeman B.D. Molecular Dynamics of Poly(Ethylene Glycol) and Poly(Propylene Glycol) Copolymer Networks by Broadband Dielectric Spectroscopy // Macromolecules.2007. V. 40. P. 2773−2789.
  6. Corner A.C., Heilman A.L., Kalika D.S.Dynamic Relaxatio Characteristics of Polymer Nanocomposites Based on Poly(ether imide) and Poly(methyl methacrylate) // Polymer. 2010. V. 51. P. 5245−5254.
  7. Schadler L., Giannaris S.C., Ajayan P.M. Load transfer in carbon nanotube epoxy composites // Applied Physics Letters. 1998. V. 73. № 26. P. 3842−3844.
  8. Fisher F.T., Bradshaw R.D., Brinson L.C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers // Applied Physics Letters. V. 80. № 24. P. 4647−4649.
  9. Cadek M., Coleman J., Barron V., Hedicke K., Blau W. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites // Applied Physics Letters. V. 81. № 27. P. 5123−5125.
  10. Sandler J., Kirk J., Kinloch I., Shaffer M., Windle A. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites // Polymer. 2003. V. 44. P. 5893−5899.
  11. Potschke P., Dudkin S., Alig I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites // Polymer. 2003. V. 44. P. 5023−5030.
  12. Meincke O., Kaempfer D., Weickmann H., Friedrich C., Vathauer M., Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene // Polymer. 2004. V. 45. P. 739−748.
  13. Zhu J., Peng H., Rodriguez-Macias F., Margrave J., Khabashesku V., Imam A., Lozano K., Barrera E. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes // Advanced Functional Materials. 2004. V. 14. № 7. P. 643−648.
  14. McNally T., Potschke P., Halley P., Murphy M., Martin D., Bell S., Brennan G., Bein D., Lemoine P., Quinn J. Polyethylene multiwalled carbon nanotube composites // Polymer. 2005. V. 46. P. 8222−8232.
  15. Smith R., Carey J., Murphy R., Blau W., Coleman J., Silva S. Charge transport effects in field emission from carbon nanotube-polymer composites // Applied Physics Letters. 2005. V. 87. P. 263105−1−3.
  16. McLachlan D., Chiteme C., Park C., Wise K., Lowther S., Lillehei P., Siochi E., Harrison J. AC and DC percolative conductivity of single wall carbon nanotube polymer composites // Journal of Polymer Science. 2005. V. B 43. P. 3273−3287.
  17. Tanaka T. Dielectric nanocomposites with insulating properties // IEEE Transactions on Dielectrics and Electrical Insulation. 2005. V. 12. № 5. P. 914−928.
  18. Korzhavyjj A.P., Loginov B.M., Loginova M.B., Belov JU.S. Issledovanie svojjstv polimernykh kompozicionnykh materialov na osnove uglerodnykh volokon i nanotrubok // Naukoemkie tekhnologii. 2014. T. 15. № 2. S. 47−59.
  19. Korzhavyi A.P., Loginov B.M., Loginova M.B., Maramygin K.V., Fedoseev I.V. Simulation diamond whiskers synthesis processes under soft conditions // Naukoemkietekhnologii. 2013. T. 14. № 7. S. 4−19.
  20. Fedoseev I.V., Gordeev A.S., Maramygin K.V. Obrazovanie almaznykh nitejj v mjagkikh uslovijakh // Materialy 7-jj Mezhdunar. konf. «Uglerod: fundamentalnye problemy nauki, materialovedenie, tekhnologija. Konstrukcionnye i funkcionalnye materialy (v tom chisle nanomaterialy) i tekhnologii ikh proizvodstva». Vladimir: VGU. 2010. S. 394.
  21. Patent RF № 2469781 ot 28.04.2011. Sposob poluchenija nitevidnykh almazov / Fedoseev I.V., Loginov B.M., Gordeev A.S., Maramygin K.V.
  22. Fedoseev I.V., Korzhavyjj A.P., Maramygin K.V. Obrazovanie almazov i drugikh uglerodnykh faz pri destrukcii karbonilnykh klasterov palladija // ZHurnal neorganicheskojj khimii. 2013. T. 58. № 12. S. 1586−1588.