350 rub
Journal Science Intensive Technologies №8 for 2015 г.
Article in number:
A hybrid antenna array diagnostics method based on sparse measurements in near-field
Keywords:
antenna array diagnostics
sparse signals
inverse problem
l1-minimization
genetic algorithm
Authors:
G.Yu. Kuznetsov - Post-graduate Student, Department 406, Moscow Aviation Institute (MAI). E-mail: gregz92@yandex.ru
V.S. Temchenko - Dr. Sc. (Eng.), Professor, Department 406, Moscow Aviation Institute (MAI). E-mail: vstemchenko@gmail.com
Abstract:
A hybrid algorithm of large antenna arrays diagnostics with low number of measurements is presented. Conventional algorithms require small spatial sampling interval that leads to large number of measurements for electrically large arrays. The proposed algorithm is based on «Compressive sensing» (CS) approach and finds the difference between reference antenna excitation and defect antenna excitation.
The algorithm comprises two steps. At first step, a local minimization-based algorithm is applied to approximately solve a diagnostics problem. At second step, this solution is used to determine «potentially defect» elements. After that, a genetic algorithm is applied to acquire more accurate solution. The results of l1-minimization-based array diagnosis using iterative algorithm and hybrid algorithm are presented.
Pages: 48-53
References
- Bucci O.M., Migliore M.D., Panariello G. Accurate Diagnosis of Conformal Arrays From Near-Field Data Using the Matrix Method // IEEE Transactactions on Antennas and Propagation. 2005. V. 53. № 3. P. 1114−1120.
- Bubnov G.G., Nikulin S.M., Serjakov JU.N., Fursov S.A. Kommutacionnyjj metod izmerenija kharakteristik FAR. M.: Radio i svjaz. 1988. S. 120.
- Bakhrakh L.D., Kremeneckijj S.D., Kurochkin A.P., Usin V.A., SHifrin JA.S. Metody izmerenijj parametrov izluchajushhikh sistem v blizhnejj zone. L.: Nauka. 1989. S. 272.
- Wang J.J.H. An Examination of Theory and Practices of Planar Near-Field Measurement // IEEE Transactions on Antennas and Propagation. June 1988. V. 36. № 6.
- Migliore M.D. A Compressed Sensing Approach for Array Diagnosis From a Small Set of Near-Field Measurements // IEEE Transact. AntennaPropagat. 2011. V. 59. № 6. P. 2127−2133.
- Rauhut H. Compressive Sensing and Structured Random Matrices // Radon Series Comp. Appl. MathXX. 2009. P. 1−94.
- Granichin O.N., Pavlenko D.V. Randomizacija poluchenija dannykh i ℓ1-optimizacija (opoznanie so szhatiem) // Avtomat. i telemekh. 2010. № 11. S. 3−28.
- Figueredo M.A.T., Nowak R.D., Wright S.J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems // IEEE Journal of Selected Topics In Signal Processing. 2007. V. 1. № 4. P. 586−597.
- Kim S.-J., Koh K., Lustig M., Boyd S. andGorinevsky D. An Interior-Point Method for Large-Scale l1-Regularized Least-Squares // IEEE Journal of Selected Topics in Signal Processing. 2007. V. 1. № 4. P. 606−617.
- Takahashi T., Miyashita H., Konishi Y., Makino S. Theoretical study on measurement accuracy of rotating element electric field vector (REV) method // Electronics and Communications in Japan. 2006. Pt. 1. V. 89. № 1.