350 rub
Journal Science Intensive Technologies №7 for 2015 г.
Article in number:
Radionuclide technologies in medicine
Authors:
A.P. Chernyaev - Dr. Sc. (Phys.-Math.), Professor, Head of Department, Faculty of Physics, Lomonosov Moscow State University; Head of Laboratory, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. E-mail: chernyaevopk@rector.msu.ru A.V. Belousov - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, Lomonosov Moscow State University. E-mail: belousovav@physics.msu.ru S.M Varzar - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, Lomonosov Moscow State University. E-mail: varzar@physics.msu.ru P.Y. Borchegovskaya - Ph. D. (Phys.-Math.), Assistant, Faculty of Physics, Lomonosov Moscow State University. E-mail: alexeevapo@mail.ru M.A. Kolyvanova - Research Scientist, Moscow Oncology Research Institute. E-mail: sapfira91@mail.ru A.A. Nikolaeva - Post-graduate Student, Faculty of Physics, Lomonosov Moscow State University. E-mail: naa90@mail.ru
Abstract:
By the early twenty-first century nuclear technology in medicine have led to appearance of installations operating with radionuclides - cobalt units, radiosurgery complexes, such as gamma knife, diagnostic and research techniques - gamma cameras, single photon emission computed tomography (SPECT), positron emission tomography (PET). In medicine, for isotope production a large number of nuclear reactors and proton accelerators are used. Today in Russia in medical institutions and centers around 2,300 units of high-tech medical equipment are working, but it is only 30% of the required amount when compared with the level of maintenance of similar equipment of medical institutions in Europe. The total number of units used radionuclides in the world is about 27 million, or about 24,5% of the total number of high-tech medical equipment. The main part of installations working in nuclear medicine is 23 thousand units (85%), as to the distance and contact radiotherapy - there are less than 15% of them. There are about 700 medical devices, working with the use of radioactive isotopes in our country or about 30% of the total number of high-tech medical equipment (about 12% ? in the external beam radiotherapy, 7% ? in the contact radiotherapy, 11% ? in the diagnos-tics). In our country medicine employs 270 sources of Co-60 γ-radiation and 5 gamma-knives. For diagnostic settings using radionuclides in Russia 240 gamma cameras (including SPECT scanners - 140), 22 PET scanners (including 7 complete PET centers) are used. There are 4 centers for radionuclide therapy (46 beds) and 5 - for radionuclide diagnostics. There are more than 800 brachytherapy centers in the world, which employ at least 2200 units of contact radiotherapy. In order to reach the average European level it is required: ~ 100 PET centers and 1,000 CT - scanners (including PET/CT scanners - 100), 300 units of SPECT, more than 100 gamma-knives, ~300 units for brachytherapy. In nuclear medicine, 45 kinds of isotopes are used, 25 of them are produced. About ten reactors and twenty proton accelerators are used for preparation of isotopes for medical use, including nuclear medicine More than 200 items of radiopharmaceuticals are produced the world. In Russia, medicine uses 22 radiopharmaceuticals for computer diagnostics, and three - for PET imaging. Currently, in our country there are at least 150 units of cobalt sets in 19 centers and bra-chytherapy cancer hospitals, although some of them are outdated. Currently, a number of companies are already developing devices for brachytherapy, which complies with the latest standards.
Pages: 65-74
References

 

  1. Bokorov B. Radiotherapy: past and present // Summary Arch Oncol. 2010. V. 18. № 4. P. 140−142.
  2. Report by the Director General, Nuclear Technology Review 2004 // IAEA, General Conference. 2004.
  3. Radiation Processing: Environmental Applications // IAEA, Vienna. 2007.
  4. Nuclear Technology Review 2009 // IAEA, Vienna. 2009.
  5. Nuclear Technology Review 2010 // IAEA, Vienna. 2010.
  6. Nuclear Technology Review 2011 // IAEA, Vienna. 2011.
  7. Nuclear Technology Review 2012 // IAEA, Vienna. 2012.
  8. Leksell L. The stereotaxic method and radiosurgery of the brain // Acta Chir Scand. 1951. V. 102. P. 316-319.
  9. Adler J.R.Jr., Chang S.D., Murphy M.J., Doty J., Geis P., Hancock S.L. The cyberknife: a frameless robotic system for radiosurgery // Stereotact Funct Neurosurg. 1997. V. 69. P. 124−128.
  10. Sadeghi M., Saidi P., Tenreiro C. Dosimetric characteristics of the brachytherapy sources based on Monte Carlo Method, applications of Monte Carlo Methods in biology // In Mode Ch.J. (ed) Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science. InTech. 2011. P. 155−176.
  11. Nath R., Anderson L.L., Luxton G., Weaver K.A., Williamson J.F., Meigooni A.S. Dosimetry of interstitial brachytherapy sources // AAPM report № 51. MedicalPhysics. 1995. V. 22. № 2. P. 209−234.
  12. Ataeinia V., Raisali G., Sadeghi M. Determination of dosimetry parameters of ADVANTAGETM 103Pd brachytherapy seed using MCNP4C computer code // NUKLEONIKA. 2009. V. 54. № 3. P. 181−187.
  13. Meigooni A.S., Maung M., Yoe-Sein, Al-Otoom A.Y., Sowards K.T. Determination of the dosimetric characteristics of InterSource 125Iodine brachytherapy source // Applied Radiation and Isotopes. 2002. V. 56. P. 589−599.
  14. Bernard S., Vynckier S. Dosimetric study of a new polymer encapsulated palladium-103 seed // Phys. Med. Biol. 2005. V. 50. P. 1493−1504.
  15. Vijande J., Granero D., Perez-Calatayud J., Ballester F. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source // J Contemp Brachyther. 2012. V. 4. № 1. P. 34−44.
  16. Hsu S.M., Wu C.H., Lee J.H., Hsieh Y.J., Yu C.Y., Liao Y.J., Kuo L.C., Liang J.A., Huang D.Y.C. A study on the dose distributions in various materials from an Ir-192 HDR brachytherapy source // PLOS ONE. 2012. V. 7. № 9.
  17. Battista R.A. Gamma knife radiosurgery for vestibular schwannoma // Otolaryngologic Clinics of North America. 2009. V. 42. № 4. P. 6−654.
  18. Moskvin V.et al.MonteCarlosimulationLeksellGammaKnife: I. Sourcemodelingandcalculationsinhomogenousmedia // Phys. Med. Biol. 2002. V. 47. P. 1995−2011.
  19. Hertz S.et al.Radioactiveiodineasanindicatorinthyroidphysiology // Americanjournalofphysiology. 1940. P. 565−576.
  20. Lawrence E.O., Livingston M.S. The production of high speed light ions without the use of high voltages // Phys. Rew. 1932. V. 40. P. 19−35.
  21. Copeland D.E., Benjamin E.W. Pinhole camera for gamma ray sources // Nucleonics. 1949. V. 5. P. 44−49.
  22. Fermi E. The Development of the first chain reaction pile // Proc. of the American Phil. Society. 1946. V. 90. P. 20−24.
  23. Hamm R.W. Industrial accelerators // Reviews of accelerator science and technology. 2008. V. 1. P. 163.
  24. Holtkamp N. Accelerators for America-s future // U.S. Department of Energy, Interim report to HEPAP. 2012.
  25. Golikova T.A. Razvitie jadernojj mediciny v Rossijjskojj Federacii // Doklad Ministra zdravookhranenija i socialnogo razvitija RF. M. 2010.
  26. Dmitriev S.N., Zajjceva N.G., Radionuklidy dlja biomedicinskikh issledovanijj. JAdernye dannye i metody poluchenija na uskoriteljakh zarjazhennykh chastic // EHCHAJA. T. 27. № 4. S. 977−1042.
  27. Klimanov V.A. Radiobiologicheskoe i dozimetricheskoe planirovanie luchevojj i radionuklidnojj terapii. CHast 2. Luchevaja terapija puchkami protonov, ionov, nejjtronov i puchkami s modulirovannojj intensivnostju, stereotaksis, brakhiterapija, radionuklidnaja terapija, optimizacija, garantija kachestva. Ucheb. posobie. M.: NIJAU MIFI. 2011.
  28. Korsunskijj V.N., Kodina G.E., Bruskin A.B. JAdernaja medicina: MRT, PEHT, kompjuternaja tomografija. Sovremennoe sostojanie i perspektivy razvitija // http://www.nuclearmedicine.ru/index.php/analitika/2010-03-22-20-08-39/85-2010-07-09-11-41-11.
  29. Kostylev V.A. Analiz sostojanija radiacionnojj onkologii v mire i v Rossii // Medicinskaja fizika. 2009. № 3. S. 5.
  30. KHarchenko V.P. Problemy i perspektivy razvitija luchevojj terapii v Rossijjskojj Federacii // Itogovaja kollegija ministerstva Zdravookhranenija Rossii. 2003.
  31. CHernjaev A.P. JAderno-fizicheskie tekhnologii v medicine // EHCHAJA. 2012. T. 43. № 2. S. 500−518.
  32. Doklad obshhestvennojj palaty Rossijjskojj federacii. Status i perspektivy razvitija jadernojj mediciny i luchevojj terapii v Rossii na fone mirovykh tendencijj. M. 2008.
  33. Sostojanie onkologicheskojj pomoshhi naseleniju Rossii v 2008 godu / Pod red. V.I. CHissovai dr. M.: FGU «MNIOI im. Gercena Rosmedtekhnologijj». 2009. S. 192.