350 rub
Journal Science Intensive Technologies №1 for 2015 г.
Article in number:
ATF-technology of communication based on using the resource of entangled states of quantum systems
Authors:
F.K. Aliev - Dr. Sc. (Phys.-Math.), Ministry of Defense of the Russian Federation (Moscow) A.M. Borodin - TVP publishing (Moscow, Russian Federation) A.V. Vassenkov - Ph. D. (Eng.), Ministry of Defense of the Russian Federation (Moscow) E.A. Matveev - Scientific and technical enterprise «Cryptosoft» (Penza, Russian Federation) A.N. Tsar\'kov - Dr. Sc. (Eng.), Professor, President of IPO «EPI» (Serpukhov, Russian Federation) I.A. Sheremet - Dr. Sc. (Eng.), Professor, Millitary-Industrial Commission of Russia (Moscow)
Abstract:
The paper introduces key elements of the new technology for data transmission and reception, entitled ATF-technology of communi-cation (with A, T and F being the first letters of the names Alexander, Tatiana and Fizuli, respectively). It is based on using the resource of entangled states of quantum systems - one of the conceptually new resources of quantum physics. The basic components of the ATF-technology of communication are: the T-hypothesis, the A-algorithm and the F-method. The T-hypothesis is a mathematically formulated assumption about the state of a quantum system that consists of two initially entangled qubits, after the completion of quantum phase transition. The formulation of this hypothesis was inspired by the results of the analysis of available theoretical and experimental data on the physical phenomenon of quantum phase transition. The paper gives a brief description of the experimental research of entangled states of two-photon quantum systems, which was carried out at the Physics Department of Lomonosov Moscow State University in 2014. The results obtained can be considered the first steps towards experimental confirmation of the T-hypothesis. The second component of the ATF-technology of communication, which is also described in the paper, is the A-algorithm for remote modification of entanglement measure of qubits. The special features of this algorithm, which make it fundamentally different from the well-known technology called "quantum teleportation", are: usage of three-qubit quantum systems to form a quantum communication channel and total exclusion of the classical communication channel between the transmitting and receiving parties. Under the condition of prior assumption that the T-hypothesis is true, the F-method - the third component of the ATF-technology of communication - provides a basis for bit-by-bit transmission of a binary message in a one-way communication session that consists of two consecutive stages. The quantum communication channel is formed by three-qubit quantum systems in entangled state, whose subsystems are distributed among the parties as follows. One-qubit subsystems belong to the sender. Two-qubit subsystems belong to the recipient. The one-way communication session for transmitting one bit consists of the following stages. In stage 1 the sender applies the A-algorithm to his array of qubits if the value of the transmitted bit is 1. If the value of the transmitted bit is 0, no action is required. In stage 2 the recipient measures his qubits and processes measurement results. The processing involves solving the statistical problem of testing a simple null hypothesis against the alternative (which is also a simple hypothesis) with the sample of a given size. If the simple hypothesis is correct, then the recipient assumes that the transmitted bit has a value of 0. Otherwise, the bit value is assumed to be 1.
Pages: 65-78
References

 

  1. Aliev F.K. O sostojanijakh kvantovojj sistemy iz dvukh chastic so spinovym chislom ½ i raznymi giromagnitnymi otnoshenijami // Materialy 11‑jj nauchno-tekhnich. konf. po kriptografii. Sekcija «Problemy kvantovojj kriptografii». M.: 2011.
  2. Aliev F.K., Borodin A.M., Vassenkov A.V., Matveev E.A., Carkov A.N., SHeremet I.A. O sposobe distancionnogo izmenenija mery neseparabelnosti kvantovykh sistem i vozmozhnosti ego primenenija v oblasti svjazi // Izvestija Instituta inzhenernojj fiziki. 2014. № 3(33). S. 30−38.
  3. Barsukov O.A., Eljashevich M.A. Osnovy atomnojj fiziki. M.: Nauchnyjj mir. 2006. 648 s.
  4. Valiev K.A., Kokin A.A. Kvantovye kompjutery: nadezhda i realnost. M.-Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2004. 320 s.
  5. Ivanov M.G. Kak ponimat kvantovuju mekhaniku. M.-Izhevsk: NIC «Reguljarnaja i khaoticheskaja dinamika». 2012. 516 s.
  6. Imre SH., Balazh F. Kvantovye vychislenija i svjaz. Inzhenernyjj podkhod. M.: FIZMATLIT. 2008. 320 s.
  7. Kashurnikov V.A., Krasavin A.V. CHislennye metody kvantovojj statistiki. M.: FIZMATLIT. 2010. 628 s.
  8. Kilin S.JA.i dr. Kvantovaja kriptografija: idei i praktika. Minsk: Belorus. nauka. 2007. 391 s.
  9. Klyshko D.N. Fotony i nelinejjnaja optika. M.: Nauka. 1980. 256 s.
  10. Kokin A.A. Tverdotelnye kvantovye kompjutery na jadernykh spinakh. M.-Izhevsk: Institut kompjuternykh issledovanijj. 2004. 204 s.
  11. Matveev A.N. Atomnaja fizika. M.: OOO «Izdatelstvo «Mir i obrazovanie». 2007. 432 s.
  12. Nilsen M., CHang I. Kvantovye vychislenija i kvantovaja informacija. M.: Mir. 2006. 824 s.
  13. Preskill Dzh. Kvantovaja informacija i kvantovye vychislenija. T. 1. M.-Izhevsk: NIC «Reguljarnaja i khoaticheskaja dinamika». 2008. 464 s.
  14. Sergeev N.A., Rjabushkin D.S. Osnovy kvantovojj teorii jadernogo magnitnogo rezonansa. M.: Logos. 2013. 272 s.
  15. FejjnmanRichard F., LejjtonRobert B., Sehnds Mehtju. Fejjnmanovskie lekcii po fizike: № 8, 9: Kvantovaja mekhanika: ucheb. posobie. M.: Izd-vo LKI. 2008. 528 s.
  16. Frish S.EH. Opticheskie spektry atomov. SPb.: «Lan». 2010. 656 s.
  17. Bogdanov Yu.I., Galeyev R.F., Maslennikov G.A., Straupe S.S., Moreva E.V.andKulik S.P. Polarization Four-Dimensional Systems based on Biphotons // Phys. Rev. A. 2006. V. 73. 063810.
  18. Kwiat P.G., Waks E., White A.G., Appelbaum I.andEberhard P.H. Ultrabright Sourse of Polarization Entangled Photons // Phys.Rev.A. 1999. V. 60. P. R773−R776.
  19. Rungta P., Buzer V., Caves C.M., Hillery M., Milburn G.J. Universal state inversion and concurrence in arbitrary dimensions // Phys. Rev. A. 2001. V. 64. 042315.
  20. Subir Sachdev. Quantum Phase Transitions. Encyclopedia of Mathematical Physics. USA. 2004.