350 rub
Journal Science Intensive Technologies №8 for 2014 г.
Article in number:
New technologies of receiving high-disperse powders for composite products ECB
Authors:
K.A. Amelicheva  Ph.D. (Eng.), Associate Professor, Bauman Moscow State Technical University, Kaluga Branch
V.P. Gatsenko  Ph.D. (Eng.), Professor, Head of Department, Rostov State Academy of Agricultural Engineering
V.P. Marin - Dr.Sc. (Eng.), Professor, Moscow Technical University of Radiotechnics, Electronics and Automatics (MIREA)
I.V. Fedoseev  Dr.Sc. (Eng.), Professor, Bauman Moscow State Technical University, Kaluga Branch
T.S. Nikolaeva  Post-graduate Student, Bauman Moscow State Technical University, Kaluga Branch. E-mail: fn2kf@list.ru
Abstract:
Composite materials on the basis of powders of platinum metals with designated grain size and grain fineness are demanded by the electronic component base (ECB) of modern radio electronics. From the analytical probes executed in work follows that two new technologies of their receiving meet to the requirements imposed to powders of platinum metals: method of magnetic separation and technology of a karbonilization. The last is described in detail. It represents realization of the reactions weeping at impact of monoxide of carbon on solutions of platinum metals chlorine complexes. Features of receiving various parties of powders of palladium in the course of realization of hydrocarbonyl processes in the specialized reactor and also their main properties are described. From the point of view of industrial production of powders of palladium, the hydrocarbonyl mode as showed results of the executed probes, is characterized by high purity of metals and low cost of production. Taking into account that by the industry is issued palladozamin Pd(NH3)2Cl), it is possible to conclude that the mass production of powders of palladium with the necessary physical and chemical technological properties won't have technical difficulties in its realization.
Pages: 38-42
References

  1. Korzhavyy A.P., Kapustin V.I., Koz'min G.V. Metody eksperimental'noy fiziki v izbrannykh tekhnologiyakh zashchity prirody i cheloveka / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.E. Baumana. 2012. 352 s. 
  2. Borisov A.A. Osnovnye napravleniya razvitiya otechestvennoy SVCh-elektroniki // Elektronnaya tekhnika. SVCh-tekhnika. 2013. Vyp. 3 (518). S. 17-30.
  3. Asliddinova M.Yu., Radzhabov T.D., Rasulov P.M., Korzhavyy A.P. O mekhanizme uvelicheniya elektricheskoy prochnosti vakuumnykh promezhutkov pri ionnoy obrabotke poverkhnosti elektrodov // Poverkhnost'. 1983. Vyp. 9. S. 132-135.
  4. Fayfer S.I., Korzhavyy A.P., Zvonetskiy V.I. Metallokeramicheskie katodnye materialy dlya elektrovakuumnykh priborov // Poroshkovaya metallurgiya. 1973. №2. S. 101-107.
  5. Patent na izobretenie № 2069915. Rus. May 26. 1995. Sposob izgotovleniya vtorichno-emissionnogo katoda / A.P. Korzhavyy, V.I. Zvonetskiy, S.D. Mirzoeva, A.V. Shishkov, G.N. Aleksandrova.
  6. Patent na izobretenie № 320851. Rus. Januar. 12. 1972. Material dlya vtorichno-elektronnykh emitterov / S.I. Fayfer, S.M. Zhdanov, A.P. Korzhavyy, V.I. Zvonetskiy, V.F. Tikhonov.
  7. Ponomarev V.A., Yarantsev N.V. Poroshkovye kompozitsionnye materialy dlya izdeliy elektronnoy tekhniki / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.E. Baumana. 2014. 304 s.
  8. Kiselev A.B. Metallooksidnye katody elektronnykh priborov. M.: Izdatel'stvo MFTI. 2001. 240 s.
  9. Yarantsev N.V., Chistyakov G.A., Korzhavyy A.P., Marin V.P., Nikiforov D.K. Metody eksperimental'noy fiziki v tekhnologii zashchity okruzhayushchey sredy i cheloveka // Naukoemkie tekhnologii. 2009. T. 10. № 5. S. 60-64.
  10. Amelicheva K.A., Belova I.K., Bondarenko G.G., Korzhavyi A.P. On the increase in Service Life of Tungsten-Base Cathode Materials // Russian mettalurgy (Metally). 2003. № 4. P. 376-381.
  11. Koz'min G.V., Korzhavyy A.P., Sanzharova N.I. Ekologicheski bezopasnye i energosberegayushchie naukoemkie tekhnologii s ispol'zovaniem vakuumnykh i plazmennykh priborov // Naukoemkie tekhnologii. 2012. T. 13. S. 64-74.
  12. Korzhavyy A.P., Marin V.P., Yarantsev N.V. Tekhnologii goryachego i kholodnogo plakirovaniya v priborostroenii // Naukoemkie tekhnologii. 2003. T. 4. № 2. S. 26.
  13. Korzhavyy A.P., Gatsenko V.P., Marin V.P., Novikova O.A. Tekhnika polucheniya nanomaterialov dlya radioelektroniki // Fundamental'nye problemy radioelektronnogo priborostroeniya. 2008. T. 8. № 1. S. 181-188.
  14. Korzhavyi A.P., Loginov B.M., Loginova M.B., Maramygin K.V., Fedoseev I.V. Simulation Diamond Whiskers Synthesis Processes under Soft Conditions // Science Intensive Technologies. 2013. V. 14. № 7. P. 4-19.
  15. Li I.P. Magnetrony impul'snogo deystviya - vse delo v katode // Elektronika NTB. 2012. № 5. S. 84-88.
  16. Vlasko A.V., Oreshkin A.A., Korzhavyy A.P., Kotunov S.V. Tekhnicheskie i ekologicheskie aspekty magnitnoy obrabotki zhidkikh i tverdykh vysokodispersnykh veshchestv // Naukoemkie tekhnologii. 2009. T. 10. №5. S. 52-59.
  17. Korol' L.N., Korzhavyy A.P., Marin V.P., Vlasko A.V., Tseluev A.A. Fizicheskie osobennosti polucheniya melkodispersnykh poroshkov vysokoy chistoty // Naukoemkie tekhnologii. 2010. T. 11. S. 15-17.
  18. Fedoseev I.V. Gidrokarbonil'nye protsessy v tekhnologii platinovykh metallov. ID «Ruda i metally». 2011. 128 s.
  19. Sergeev G.B. Nanokhimiya. M.: Izd-vo Moskovskogo universiteta. 2007. 336 s.
  20. Li I.P., Bondarenko G.G. Ispol'zovanie Vodorodno-vakuumnoy obrabotki poroshkov palladiya dlya polucheniya effektivnykh metallosplavnykh katodov beznakal'nogo magnetrona // Perspektivnye materialy. 2012. № 1. S. 30-34.