350 rub
Journal Science Intensive Technologies №8 for 2014 г.
Article in number:
Regularities of strain hardening of crystalline materials containing composite ensembles of defects
Authors:
E.V. Vershinin  Ph.D. (Phys.-Math.), Associate Professor, Chair of «Computer Software, Information Technologies and Applied Mathematics», Bauman Moscow State Technical University, Kaluga Branch
S.A. Glebov - Ph.D. (Phys.-Math.), Associate Professor, Chair of «Computer Software, Information Technologies and Applied Mathematics», Bauman Moscow State Technical University, Kaluga Branch
V.N. Vlasov - Ph.D. (Phys.-Math.), Associate Professor, Chair of «Computer Software, Information Technologies and Applied Mathematics», Bauman Moscow State Technical University, Kaluga Branch
S.V. Rybkin - Ph.D. (Phys.-Math.), Associate Professor, Chair of «Computer Software, Information Technologies and Applied Mathematics», Bauman Moscow State Technical University, Kaluga Branch
Abstract:
The analysis of the processes of the glide dislocation movement through the composite ensembles of point obstacles and forest dislocations in the crystals with HCP and AHC structure have been carried out by computer simulation methods. The simulation was performed taking into account the fine structure of the internal stress fields generated by the forest dislocations. There have been done the analysis of possible interoperability between the various ensembles of point obstacles in the process of glide dislocations movement through chaotic composite ensembles of forest dislocations and point obstacles. There have been found that different point obstacles due to changes in their density in accordance with their power are interchangeable in terms of contribution to the total work hardening, and from the point of view of other statistical characteristics. A universal formula for calculating the total strain hardening on the basis of data on contributions to the strengthening of the respective one-component ensembles have been suggested.
Pages: 19-26
References

  1. Smirnov B.I. E'volyucziya dislokaczionnoj struktury' i stadijnost' krivy'x uprochneniya kristallov // Izvestiya AN SSSR. Ser. Fizicheskaya. 1973. T. 37. № 11. S. 2427-2432.
  2. Loginov B.M., Predvoditelev A.A. Modelirovanie dvizheniya dislokaczij // Fizika tverdogo tela. 1981. T. 23. № 1. S. 112-116.
  3. Loginov B.M., Predvoditelev A.A. Modelirovanie dvizheniya dislokaczij cherez les gibkix i reagiruyushhix dislokaczij v kristallax s geksagonal'noj plotno upakovannoj reshetkoj // Fizika metallov i metallovedenie. 1981. T. 52. № 6. S. 1267-1273.
  4. Kocks U.F. A Statistical theory of flow stress and workharderning // Philosophical Magazine. 2006. V. 13. № 163. R. 541-566.
  5. Loginov B.M., Predvoditelev A.A. Computer simulation of dislocation motion through a flexible and reactionable dislocation forest of different density in NaCI and Mg crystals // Physica Status Solidi (a). 1982. V. 72. R. 69-77.
  6. Predvoditelev A.A., Loginov B.M. Vliyanie gibkosti dislokaczij lesa na soprotivlenie kristallov deformirovaniyu // Fizika tverdogo tela. 1983. T. 25. № 10. S. 3181-3183.
  7. Predvoditelev A.A., Loginov B.M. Zakonomernosti proczessa proxozhdeniya dislokaczij cherez gibkie i reagiruyushhie dislokaczionny'e ansambli // Kristallografiya. 1985. T. 30. № 4. S. 742-745.
  8. Loginov B.M., Eremeev A.V. Modelirovanie dvizheniya dislokaczij cherez gibkij i reagiruyushhij les dislokaczij v oblasti kriticheskoj plotnosti dislokaczij lesa // Fizika tverdogo tela. 1986. T. 28. № 6. S. 1896-1898.
  9. Landau A.L. Kinetics of the dislocation motion in a crystal containing a spectrum of local obstacles (stoppers) // Physica Status Solidi (a). 2003. V. 45. № 1. R. 343-350.