350 rub
Journal Science Intensive Technologies №8 for 2014 г.
Article in number:
Regularities of equilibrium and stability of dislocation nodes configurations
Authors:
R.B. Bobrov - Post-graduate Student of Department of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: ybs82@mail.ru
N.N. Vostrov - Ph.D. (Eng.), Associate Professor of chair of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: nnvo47@mail.ru
A.N. Proskurnin - Ph.D. (Phys.-Math.), Associate Professor of Department of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: proskurnin-an@mail.ru
V.S. Sidorov - Ph.D. (Eng.), associate Professor of Chair of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: sid-vs@mail.ru
B.M. Loginov - Dr.Sc. (Phys.-Math.), Professor of Department of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: bmloginov@kaluga.ru
Abstract:
The modern models and methods of analysis of the processes of interaction of dislocations during nodal dislocation configurations formation were considered. In the continuum approximation, based on the method of moments, the analysis of equilibrium and stability of nodal dislocation configurations during pyramidal and basal dislocations interaction applied to crystals with hcp structure was carried out. The regions of spatial-angular characteristics of interacting dislocations within which the dislocation configuration retain or lose their stability were determined. The parametric characteristics for which the intersecting dislocation interaction leads to dislocation reactions with seating dislocations formation were identified.
Pages: 3-12
References

  1. Belov Ju.S., Chzho Min Tejn, Proskurnin A.N. Razrabotka metodov komp'yuternogo modelirovaniya proczessov vzaimodejstviya skol'zyashhix dislokaczij s uporyadochenny'mi ansamblyami dislokaczionny'x skoplenij // Naukoemkie texnologii. 2010. T. 10. № 7. S. 24-32.
  2. Zhong J.M., Gao Y., Wang D.X., Wang X.Z., Wang L.S. Micro yield behavior and mechanism of beryllium metal // The Chinese Journal of Nonferrous Metals. 2004. V. 14. № 10. P. 1637-1641.
  3. Xu D.S., Yang R., Li J., Hang P.J., Wang H., Li D., Zuip A.S. Atomistic simulation of the influence of pressure on dislocation nucleation in bcc Mo // Computational Materials Science. 2006. V. 36. P. 60-64.
  4. Lu L., Dao M., Zhu T., Li D.J. Size dependence of rate-controlling deformation mechanisms in nanotwinned cooper // Scripta Materialia. 2009. V. 60. P. 1062-1066.
  5. Zhou N., Shen C., Mills M.J., Luir J., Wang Y. Modeling displacive-diffusional coupled dislocation shearing of gamma prime precipitates in Ni-base superlloys // Acta Materiala. 2011. V. 59. P. 3484-3497.
  6. Cai W., Bulatov V.V., Chang J.P., Li J., Yip S. Dislocaton core effects on mobility // Dislocations in Solids. 2004. V. 12. P. 1-80.
  7. Xiang Y. Modeling dislocations at different scales // Communication in computational physics. 2006. V. 1. № 3. P. 383-424.
  8. Wang Z., Ghoniem N., Swaminarayan S., Lesar R. A parallel algoritm for 3D dislocation dynamics // Journal of Computational Physics. 2006. V. 219. P. 608-621.
  9. Qian Yu Q., Liang Qi L., Kai Chen K., Raja K. Mishra R.K., Andrew M. Minor A.M. The nanostructured origin of deformation twinning // Nano Letters. 2012. V. 12. P. 887-892.
  10. Tang M., Cai W., Xuir C. G., Sulayt V.V. A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics // Modelling and Simulation in Materials Science and Engineering. 2006. V. 14. P. 1139-1151.