350 rub
Journal Science Intensive Technologies №2 for 2014 г.
Article in number:
Investigation of the properties of polymeric composite materials based on carbon fibers and nanotubes
Authors:
A.P. Korzhavyi - Dr.Sc. (Eng), Professor, Head of Department of «Industrial ecology and chemistry» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: fn2-kf@bmstu-kaluga.ru
B.M. Loginov - Dr.Sc. (Phys.-Math.), Professor, Head of Department of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: bmloginov@kaluga.ru
M.B. Loginova - Assistant, of Department of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch
Y.S. Belov - Ph.D. (Phys.-Math.), Associate Professor of chair of «Computer Software, Information Technologies and Applied Mathematics» of Bauman Moscow State Technical University, Kaluga Branch. E-mail: ybs82@mail.ru
Abstract:
A review and systematization of the current methods of synthesis and experimental study of the mechanical properties of polymer composites based on linear carbon fibers and nanotubes was carried out. The analysis of the results of load and distribution mechanisms study in the composite material had shown that multiple adhesion properties improvement could be achieved by functionalization of the surfaces of composite materials interfacial by certain groups chemisorbents. Reviewed and summarized the results of experimental studies and research related to the effect of concentration of carbon formations on the mechanical properties of composite materials based on various polymer matrices.
Pages: 47-59
References

  1. Ding W., Eitan A., Fisher F.T., Chen X., Dikin D.A., Andrews R. Direct observation of polymer in carbon nanotube-polycarbonate composites // Nano Letters. 2003. V. 3. № 11. P. 1593-1599.
  2. Sander J.K.W., Pegel S., Cadek M., Cojny F., Es M., Lohmar J. A comparative study of melt spun polyamide-12 fifers reinforced with carbon nanotubes and nanofibers // Polymer. 2004. V. 45. № 6. P. 2001-2015.
  3. Bhattacharyya S., Sinturel C., Salvetat J.P., Saboungi M.L. Protein-functionalized carbon nanotube-polimer composites // Appl. Phys. Lett. 2005. V. 86. № 11. P. 113104-113110.
  4. Qian D., Dickey E.C., Andrews R., Rantell T. Load transfer and deformation mechanism in carbon nanotube-polysterene composites // Appl. Phys. Lett. 2000. V. 76. № 20. P. 2868-2870.
  5. Hwang G.L., Shieh Y.T., Hwang K.C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites // Adv. Funct. Mater. 2004. V. 14. № 5. P. 487-491.
  6. Eitan A., Fisher F.T., Andrews R., Brinson L.C., Schadler L.S. Reinforcement mechanisms in MWCNT-filled polycarbonate // Composites Science and Technology. 2006. V. 66. P. 1159-1170.
  7. Zhao X.D., Fan X.H., Chen X.F., Chai C.P., Zhou Q.F. Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization // Journal of Polymer Science: Part A Polymer Chemistry. 2006. V. 44. P. 4656-4667.
  8. Blake R., Gunko Y.K., Coleman J., Cadek M., Fonseca A., Nagy J.B. A generic organometallic approach toward ultra-strong carbon nanotube polimer composites // J. Am. Chem. Soc. 2004. V. 126. № 33. P. 10225-10233.
  9. Jia Z., Wang Z., Xu C., Liang J., Wei B., Wu D., Zhu S. Study on poly(methyl methacrylate)/carbon nanotube composites // Mater. Sci. Eng., A. 1999. V. 271. № 1-2. P. 395-400.
  10. Jin Z., Pramoda K., Goh S.H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites // Chem. Phys. Lett. 2001. V. 337. № 1-3. P. 43-47.
  11. Cooper C.A., Ravich D., Lips D., Mayer J., Wagner H.D. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix // Composites Science and Technology. 2002. V. 62. № 7-8. P. 1105-1112.
  12. Valasco-Santos C., Martinez-Hernandez A.L., Fisher F., Ruoff R., Castano V.M. Dynamical-mechanical and thermal analysis of carbon nanotube-methyl-ethyl methacrylate nanocomposites // J. Phys. D. Appl. Phys. 2003. V. 36. № 12. P. 1423-1428.
  13. Gorga R.E., Cohen R.E. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes // J. Polym. Sci. Part B: Polym. Phys. 2004. V. 42. № 14. P. 2690-2702.
  14. Sabba Y., Thomas E.L. High-concentration dispersion of single-wall carbon nanotubes // Macromolecules. 2004. V. 37. № 13. P. 4815-4820.
  15. Kim K.H., Jo W.H. Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate) // Composites Science and Technology. 2008. V. 68. № 9. P. 2120-2124.
  16. Bae D.Y., Lee H.S. Enhanced compatibility of PC/PMMA alloys by adding multiwall carbon nanotubes // Carbon Letters. 2010. V. 11. № 2. P. 83-89.
  17. Kearns J.C., Shambaugh R.L. Polypropylene fibers reinforced with carbon nanotubes // J. Appl. Polym. Sci. 2002. V. 86. № 8. P. 2079-2084.
  18. Grady B.P., Pompeo F., Shambaugh R.L., Resasco D.E. Nucleation of polypropylene crystallization by single-walled carbon nanotubes // J. Phys. Chem. B. 2002. V. 106. № 23. P. 5852-5858.
  19. Manchado M.A.L., Valentini L., Biagiotti J., Kenny J.M. Thermal and mechanical properties of single-walled carbon nano-tubes-polypropylene composites prepared by melt processing // Carbon. 2005. V. 43. № 7. P. 1499-1505.
  20. Manchado M.A.L., Valentini L., Biagiotti J., Kenny J.M. Thermal and mechanical properties of single-walled carbon nanotubes-polypro­pylene composites prepared by melt processing // Carbon. 2005. V. 43. № 7. P. 1499-1505.
  21. Chang T.E., Jensen L.R., Kisliuk A., Pipes R.B., Pyrz R., Sokolov A.P. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite // Polymer. 2005. V. 46. № 2. P. 439-444.
  22. McIntosh D., Khabashesku V.N., Barrera E.V. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube−polypropylene composite fibers // J. Phys, Chem. C. 2007. V. 111. № 4. P. 1592-1600.
  23. Zhao P., Wang K., Yang H., Zhang Q., Du R., Fu Q. Excellent tensile ductility in highly oriented injection-molded bars of polypropyl­ene/carbon nanotubes composites // Polymer. 2007. V. 48. № 19. P. 5688-5695.
  24. Prashantha1 K., Soulestin J., Lacrampe M.F., Claes M., Dupin G., Krawczak P. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition // eXPRESS Polymer Letters. 2008. V. 2. № 10. P. 735-745.
  25. Zhang W.D., Shen L., Phang I.Y., Liu T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding // Macromolecules. 2003. V. 37. P. 256-259.
  26. Liu T., Phang I.Y., Shen L., Chow S.Y., Zhang W.D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites // Macromolecules. 2004. V. 37. P. 7214-7222.
  27. Gao J., Itkis M.E., Yu A., Bekyarova E., Zhao B., Haddon R.C. Continuous spinning of a single-walled carbon nanotube-nylon composite fiber // J. Am. Chem. Soc. 2005. V. 127. P. 3847-3854.
  28. Zhao C., Hu G., Justice R., Schaefer D.W., Zhang S., Yang M., Han C.C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization // Polymer. 2005. V. 46. № 14. P. 5125-5132.
  29. Shao W., Wang Q., Wang F., Chen Y. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with poly­amide 6 in the solid state // Carbon. 2006. V. 44. № 13. P. 2708-2714.
  30. Yang M., Gao Y., Li H., Adronov A. Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization // Carbon. 2007. V. 45. № 12. P. 2327-2333.
  31. Gong X., Liu J., Baskaran S., Voise R.D., Young J.S. Surfactant-as­sisted processing of carbon nanotube/polymer composites // Chem. Mater. 2000. V. 12. № 4. P. 1049-1052.
  32. Bai J.B., Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites--experimental inves­tigation // Compos., Part A: Appl. Sci. Manuf. 2003. V. 34. № 8. P. 689-694.
  33. Miyagawa H., Drzal L.T. Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes // Polymer. 2004. V. 45. № 15. P. 5163-5170.
  34. Gojny F.H., Wichmann M.H.G., Fiedler B., Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - a comparative study // Composites Science and Technology. 2005. V. 65. P. 2300-2313.
  35. Guo P., Chen X., Gao X., Song H., Shen H. Fabrication and mechani­cal properties of well-dispersed multiwalled carbon nanotubes/epoxy composites // Composites Science and Technology. 2007. V. 67. P. 3331-3337.
  36. Liu L., Etika K.C., Liao K.S., Hess L.A., Bergbreiter D.E., Grunlan J.C. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy // Macromol. Rapid Commun. 2009. V. 30. № 8. P. 627-632.
  37. Spitalsky Z., Krontiras C.A., Georga S.N., Galiotis C. Effect of oxida­tion treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites // Compos. Part A: Appl. Sci. Manuf. 2009. V. 40. № 6-7. P. 778-783.
  38. Shaffer M.S.P., Windle A.H. Fabrication and characterization of carbon nanotube/poli(vinil alcohol) composites // Adv. Mater. 1999. V. 11. № 11. P. 937-941.
  39. Cadek M., Coleman J.N., Barron V., Hedicke K., Blau W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites // Appl. Phys. Lett. 2002. V. 81. № 27. P. 5123-5125.
  40. Cadek M., Coleman J.N., Ryan K.P.,Nicolosi V., Bister G., Fonseca A. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area // Nano Letters. 2004. V. 4. № 2. P. 353-356.
  41. Coleman J.N., Cadek M., Blake R., Nicolosi V., Ryan K.P., Belon C. High performance nanotube-reinforced plastics: understanding the mechanism of strength increase // Adv. Funct. Mater. 2004. V. 14. № 8. P. 791-798.
  42. Paiva M.C., Zhou B., Fernando K.A.S., Lin Y., Kennedy J.M., Sun Y.P. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes // Carbon. 2004. V. 42. № 14. P. 2849-2854.
  43. Safadi B., Andrews R., Grulke E.A. Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films // J. Appl. Polym. Sci. 2002. V. 84. № 14. P. 2660-2669.
  44. Thostenson E.T., Chou T.W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization // J. Phys. D: Appl. Phys. 2002. V. 35. № 16. P. L77-L80.
  45. Choi H.J., Zhang K., Lim J.Y. Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization // J. Nanosci. Nanotechnol. 2007. V. 10. P. 3400-3403.
  46. Jiaa Y., Jiang Z., Peng J., Gonga X., Zhang Z. Resistance to time-dependent deformation of polystyrene/carbon nanotube composites under cyclic tension // Composites: Part A. 2012. V. 43. P. 1561-1568.
  47. Fornes T.D., Baur J.W., Sabba Y., Thomas E.L. Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes // Polymer. 2006. V. 47. P. 1704-1714.
  48. Kanagaraj S., Varanda F.R., Zhiltsova T.V., Oliveira M.S.A., Simoes J.A.O. Mechanical properties of high density polyethylene/carbon nanotube composites // Composites Science and Technollogy. 2007. V. 67. № 15-16. P. 3071-3077.
  49. Xu M., Zhang T., Gu B., Wu J., Chen Q. Synthesis and properties of novel polyurethane−urea/multiwalled carbon nanotube compos­ites // Macromolecules. 2006. V. 39. № 10. P. 3540-3545.
  50. Ogasawara T., Ishida Y., Ishikawa T., Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated poly­imide composites // Compos. Part A. Appl. Sci. Manuf. 2004. V. 35. № 1. P. 67-74.
  51. Kearns J.C., Shambaugh R.L. Polypropylene fibers reinforced with carbon nanotubes // Journal of Applied Polymer Science. 2002. V. 86. № 8. P. 2079-2084.
  52. Sandler J.K.W., Pegel S., Cadek M., Gojny F., Es M., Lohmar J., Blau W.J., Schulte K., Windle A.H., Shaffer M.S.P. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres // Polymer. 2004. V. 45. № 6. P. 2001-2015.
  53. Iwahori Y., Ishiwata S., Sumizawa T., Ishikawa T. Mechanical properties improvement in two-phase and three-phase composites using carbon nano fiber dispersed resin // Composite, Part A: Applied Science and Manufacturing. 2005. V. 36. № 10. P. 1430-1439.
  54. Lam C.K., Cheung H.Y., Ling H.Y., Lau K.T. Effects of ultrasound sonication in nanoclay clusters of nanoclays/epoxy composites // Mater. Lett. 2005. V. 59. № 11. P. 1369-1372.
  55. Zhou Y., Pervin F., Rangari V.K., Jeelani S. Fabrication and evaluation of carbon nano fiber filled carbon/epoxy composite // Materials Science and Engineering: A. 2006. V. 426. № 1-2. P. 221-228.
  56. Zhou Y., Pervin F., Rangari V.K., Jeelani S. Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites // Journal of Materials Processing Technology. 2007. V. 191. № 1-3. P. 347-351.
  57. Zhou Y., Pervin F., Jeelani S., Mallick P.K. Improvement in mechanical properties of carbon fabric - epoxy composite using carbon nanofibers // Journal of Materials Processing Technology. 2008. V. 198. № 1-3. P. 445-453.
  58. Mago G., Kalyon D.M., Fisher F.T. Polymer crystallization and precipitation-induced wrapping of carbon nanofibers with PBT // Journal of Applied Polymer Science. 2009. V. 114. P. 1312-1319.
  59. Modi S.H., Dikovics K.B., Gevgilili H., Magoc G., Bartolucci S.F., Fisher F.T., Kalyon D.M. Nanocomposites of poly(ether ether ketone) with carbon nanofibers: Effects of dispersion and thermo-oxidative degradation on development of linear viscoelasticity and crystallinity // Polymer. 2010. V. 51. P. 5236-5244.
  60. Mago G., Kalyon D.M., Fisher F.T. Nanocomposites of polyamide-11 and carbon nanostructures: Development of microstructure and ultimate properties following solution processing // Journal of Polymer Science: Part B Polymer Physics. 2011. V. 49. P. 1311-1321.