350 rub
Journal Science Intensive Technologies №11 for 2014 г.
Article in number:
Physicochemical special features of «scandat» cathode materials
Authors:
I.P. Lee - Ph. D. (Eng.), Head of Department, JSC «Pluton» (Moscow). E-mail: ork@pluton.msk.ru
V.I. Kapustin - Dr. Sc. (Phys.-Math.), Professor, MIREA (Moscow). E-mail: Kapustin@mirea.ru
N.E. Ledentсova - Engineer, JSC «Pluton» (Moscow), Post-graduate Student, MIEM NRU HSE (Moscow). E-mail: nekharitonova@mail.ru
A.D. Silaev - Head of Laboratory, JSC «Pluton» (Moscow), Post-graduate Student, MATI-RSUAT (Moscow). E-mail: silaev_ad@mail.ru
V.S. Polyakov - Head of Laboratory, JSC «Pluton» (Moscow), Post-graduate Student, MATI-RSUAT (Moscow). E-mail: p_vs@list.ru
V.S.Petrov - Ph. D. (Eng.), Associate Professor, Engineer, JSC «Pluton» (Moscow)
Y.Y.Lebedinskiy - Ph. D. (Phys.-Math.), Senior Research Scientist, MIPT (SU) (Dolgoprudny). E-mail: YYLebedinskij@mephi.ru
A.V.Zablotskiy - Research Engineer, MIPT (SU) (Dolgoprudny). E-mail: zalexx@gmail.com
Abstract:
Scandate cathodes have better thermionic characteristics compared to the typical impregnated cathodes but they are less stable and less durable. Therefore, the development of physicochemical mechanisms of scandate cathodes action for optimization of their composition and fabrication is needed. In our analytical research, a scientific hypothesis on a mechanism of effect of scandium in cathode material on its thermionic characteristics was formulated. According to this hypothesis the main roles of scandium in cathode material are the decrease of barium oxide surface barrier due to appearing of cationic vacancies (barium vacancies) and developing of additional donor levels on the barium oxide surface. By high resolution electronic spectroscopy it was shown that if scandium oxide was present in cathode material, electronic levels of barium in barium oxide were broadened. This indicates that in the presence of doping scandium ions barium converts to the state with a broader row of oxidation numbers than in the presence of doping aluminum ions. In turn, this fact suggests that scandium ions are more soluble in barium oxide compared to aluminium ions. This favors formation of cationic vacancies and donor surface states in barium oxide. The paper includes 12 pictures, 3 sheets, and 26 references.
Pages: 40-49
References

  1. Gartner G., Geintter P., Ritz A. // Appl. Surf. Sci. 1997. V. 111. P. 11−17.
  2. Gartner G., Geittncr P., Lydtin H. // ITG-Fachbericht 132. Vakuumelektronik Displays. 1995. P. 35−40.
  3. Thomas R.E., Gibson J.W., Haas G.A., Abrams R.H. // IEEE Trans. Electron Devices. 1990. V. 37. № 3 . P. 850−861.
  4. A. van Oostrom, Augustus L. // Appl. Surf. Sci. 1979. V. 2. № 2. P. 173−186.
  5. US‑Patent 4007393. Granted 8‑2‑1977. Priority 21.02.1975. Barium-Aluminum-Scandate Dispenser Cathode. / A. van Stratum, J. van Os, Blatter J.R., Zalm P.
  6. Taguchi S., Aida T., Yamamoto S. // IEEE Trans. Electron Devices. 1984. V. 31. № 7. P. 900−903.
  7. Hasker J., Crombeen J.E. // IEEE Trans. Electron Devices. 1990. V. 37. № 12. P. 2589−2594.
  8. Hasker J., J. van Esdonk, Crombeen J.E. // Appl. Surf. Sci. 1986. V. 26. P. 173−195.
  9. Yamamoto S., Sasaki S., Taguchi S., Watanabe I., Koganczawa N. // Appl. Surf. Sci. 1988.V. 33−34. P. 1200−1207.
  10. Yamamoto S., Taguchi S., Aida T., Kawase S. // Appl. Surf. Sci. 1984. V. 17. P. 517−529.
  11. Yamamoto S., Watanabe I., Taguchi S., Sasaki S., Yaguchi T. // Jpn. J. Appl. Phvs. 1989. V. 28. P. 490−494.
  12. Gartner G., Janiel P., Crombeen J.E., Hasker J. // Vacuum Microelectron. IOP Conf. Ser. 1989. V. 99. P. 25−28.
  13. De'vison S., Levin Dzh. Poverxnostny'e (Tammovskie) sostoyaniya. M.: Mir. 1973. 232 s.
  14. Kapustin V.I. Rol' kislorodny'x vakansij i fazovogo sostava v formirovanii e'missionny'x svojstv oksidsoderzhashhix katodny'x materialov // Diss. - dokt. fiz.‑mat. nauk. M.: Izd‑vo MIE'M. 1999. 148 s.
  15. Kapustin V.I. Raschet temperaturnoj zavisimosti raboty' vy'xoda okisi bariya // Izv. AN SSSR. Ser. Fiz. 1991. T. 55. № 12. S. 2455−2458.
  16. Kapustin V.I. Fiziko-ximicheskie osnovy' sozdaniya mnogokomponentny'x oksidsoderzhashhix katodny'x materialov // Perspektivny'e materialy'. 2000. № 2. S. 5−17.
  17. Madelung O. Fizika tverdogo tela. Lokalizovanny'e sostoyaniya / Per s nem. 1985. M.: Nauka. 184 s.
  18. Lazarev V.B., Sobolev V.V., Shaply'gin I.S. Ximicheskie i fizicheskie svojstva prosty'x oksidov metallov. M.: Nauka. 1983. 240 s.
  19. Fiziko-ximicheskie svojstva okislov. Spravochnik // Pod red. G.V. Samsonova. M.: Metallurgiya. 1969. 456 s.
  20. Won‑Gap Seo, Donghong Zhou, Fumitaka Tsukihashi. Calculation of Thermodynamic Properties and Phase Diagrams for the CaO−CaF2, BaO−CaO and BaO−CaF2 Systems by Molecular Dynamics Simulation // Materials Transactions. V. 46. № 3 (2005) P. 643−650.
  21. W.J.M. Van der Kemp, Blok J.G., P.R. Van der Linde, Oonk H.A.J., Schuijff A. // Calphad 18. 1994. P. 255−267.
  22. Laura Schoenbeck. Investigation of reactions between barium compounds and tungsten in a simulated reservoir hollow cathode environment // In Partial Fulfillment Of the Requirements for the Degree Master of Science in Materials Science and Engineering. Georgia Institute of Technology. February 2005. 118 r.
  23. Toropov N.A., Galakhov F.Y. Diagram of the State of the BaO−AlB2BOB3B System // Reports of the USSR Academy of Sciences. V. 82. № 1. 1952.
  24. Appendino P. Research on the Most Basic Portion of the System Barium Oxide - Alumina // Ann. Chem. V. 61. 1971. P. 822−830.
  25. Magnus S.H. An Investigation of the Relationship Between the Thermochemis - try and Emission Behavior of Thermionic Cathodes Based on the BaO−Sc2O3−WO3 Ternary System // Doctoral Thesis, School of Materials Science and Engineering, Georgia Institute of Technology. Atlanta. Georgia. 1996.
  26. Kreidler E.R. Phase Equilibriums in the System «Calcium Oxide ? Barium Oxide - Tungsten Oxide» // J. Amer. CeramicSoc. V. 55. № 10. 1972. P. 514−519.