350 rub
Journal Science Intensive Technologies №10 for 2014 г.
Article in number:
Physical and technological basis for the long-term to ensure the stability of the emission properties of composite cathodes
Authors:
I.K. Belova - Ph. D. (Phys.-Math.), Associate Professor, Bauman Moscow State Technical University, Kaluga Branch
S.M. Zhdanov - Dr. Sc. (Eng.), Professor, Bauman Moscow State Technical University, Kaluga Branch
N.A. Tomilin - Dr. Sc. (Eng.), Scientific Adviser, Center «NIITAL» (Moscow). E-mail: fn2kf@list.ru
Abstract:
When you create a composite cathodes main factors clarifies the specific conditions of their use, are the physical delivery processes of emission-active substance to the emitting surface of the cathode and their impact on the bombarding charged and accelerated particles. E Is this bombardment in a vacuum or under ion bombardment of the arc discharge, considered together with the emissivity of the cathode. For this purpose samples of cathodes examined using various analytical instruments or modeling of physical processes. We have studied the phase composition systems platinum-beryllium oxide - an oxide of barium x ray diffractometer ADJ 102 in the filtered radiation from a copper anti-cathode according to the method of the section. Beryllium oxide phase in the Pt−BeO is observed on samples soderzhaschih five percent or less of a volume increase at the sintering temperature to 1773 K and to increase the exposure time of two hours or more. In samples with beryllium oxide content is 30 vol%, it can be easily detected and after sintering at 1773 K for 1 hour. For samples of Pt + 10% vol. (BaO: BeO = 1: 8), sintered at 1773 K for 3 hours, except for the compound Ba2Be3O5 clearly detected phase BaBe3O4 and BeO. Also carried out studies of the chemical and phase composition of the emissive material impregnated cathodes of tungsten-barium calcium aluminate to its setting in the device and after the completion of his work. Investigated local areas (23 plots size 40×40 mm) surface and volume of the cathode (transverse fracture) by scanning electron microscopy (REM), color (spectral) cathodoluminescence (LKL) and electron probe microanalysis (RSMA). The results of studies of the ternary system BaO−Al2O3−CaO in a REM images show the heterogeneity of chemical and phase composition of the emission-active substances in the samples, which had a negative impact on the operation of the instrument. It is shown that the violation of technological modes of manufacturing cathodes unacceptable.
Pages: 21-24
References

  1. Dyubua B.CH., Zemchixin E.M., Makarov A.P.idr. E'missionny'e svojstva i dolgovechnost' metalloporisty'x katodov // Radiotexnika i e'lektronika. 1991. № 5. S. 985.
  2. Polivnikova O.V., Zemchixin E.M. Katody' spiral'noj formy' dlya magnetronov SVCH-nagreva // E'lektronnaya texnika. Ser. SVCH-texnika. 1996. № 1(467). S. 147.
  3. Patent RF na poleznuyu model' № 39223. Pryamonakal'ny'j katod dlya e'lektronny'x priborov magnetronnogo tipa / Polivnikova O.V. Prioritet ot 20.11.2002.
  4. Djubua B.Ch., Polivnicova O.V. Quasi-directly cathode for magnetron // Proceeding of the 5‑th International Vacuum Electron Sources Conference. Beijing. 2004. P. 177.
  5. Tomilin N.A., Sergeev V.S., Koxanov A.A. Issledovanie impregnirovanny'x katodov moshhny'x SVCH-priborov // Naukoemkie texnologii. 2005. T. 6. № 3−4. S. 26−27.
  6. Marin V.P., Esaulov M.N., Esaulov N.P., Korzhavy'j A.P. Vliyanie e'lektronnoj bombardirovki na sostav poverxnosti nizkotemperaturny'x katodny'x materialov // Naukoemkie texnologii. 2004. T. 5. № 1. S. 35−43.
  7. Baranova V.I., Gerasimova L.G., Ermakova N.V., Kudryavczeva V.V. Nekotory'e zakonomernosti degradaczii katodov iz kompoziczionnogo materiala v sil'notochnom dugovom razryade // E'lektronnaya texnika. Lazernaya texnika i optoe'lektronika. 1990. № 4(56). S. 83−85.
  8. Korzhavy'j A.P. Poroshkovaya metallurgiya v materialosberegayushhix texnologiyax izgotovleniya katodny'x uzlov IE'T // E'lektronnaya promy'shlennost'. 1986. № 3. S. 48.
  9. Korzhavyi A.P. Advanced Metallic for Vacuum Devices // Journal of Advanced Materials. 1994. T. 1. № 1. S. 46.
  10. Marin V.P., Vlasko A.V., Pchelinczeva N.I., CHelenko V.V., Korzhavy'j A.P., YAranczev N.V. Novy'e texnologii polucheniya kompoziczionny'x materialov, obespechivayushhix povy'shenny'j resurs // Naukoemkie texnologii. 2008. T. 9. № 10. S. 4−9.
  11. Korol' L.N., Korzhavy'j A.P., Marin V.P., Vlasko A.V., CZeluev A.A., YAranczev N.V., CHelenko V.V. Fizicheskie osnovy' i texnologicheskie osobennosti polucheniya melkodispersny'x poroshkov vy'sokoj chistoty' // Naukoemkie texnologii. 2010. T. 11. № 11. S. 015−017.
  12. Korzhavy'j A.P., Loginov B.M., Loginova M.B., Belov YU.S. Issledovanie svojstv polimerny'x kompoziczionny'x materialov na osnove uglerodny'x volokon i nanotrubok // Nanotexnologii: razrabotka, primenenie. XXI vek. 2014. T. 6. № 1. S. 34−46.
  13. Inyuxin M.V., Korzhavy'j A.P., Prasiczkij G.V. Parametry' i texnika polucheniya teplootvodyashhix materialov dlya poluprovodnikovy'x priborov // Naukoemkie texnologii. 2014. T. 15. № 2. S. 10−19.
  14. Toropov N.A.i dr. Diagrammy' sostoyaniya silikatny'x sistem. Spravochnik. Trojny'e okisny'e sistemy'. L.: Nauka, Leningradskoe otdelenie. 1974. 514 s.
  15. Galaxov F.YA. Diagrammy' sostoyaniya sistem tugoplavkix oksidov: Spravochnik / Otv. red. F.YA. Galaxov. L.: Nauka. 1985. № 5. 284 s.
  16. Aitov R.D., Korzhavy'j A.P., Kristya V.I. Vliyanie zaryadki poverxnosti na koe'fficzient vtorichnoj e'lektronnoj e'missii kompoziczionny'x katodov // Radiotexnika i e'lektronika. 1995. № 11. S. 1692.