350 rub
Journal Science Intensive Technologies №5 for 2013 г.
Article in number:
Autoregression models of multidimensional images
Authors:
K.K. Vasil-ev, V.E. Dement-ev
Abstract:
In work ways of the casual fields - description, allowing describing separate shots and sequences of multidimensional images are investigated. Autoregression models with multiple roots of the characteristic equations are for this purpose used. Feature of these models is the proximity of probabilistic properties of the created images and characteristics of real multidimensional signals. Feature of these models is the proximity of probabilistic properties between the created images and real multidimensional signals. Also analytical expressions for autoregression model with multiple roots are simple for model control according to real images. Use of autoregression models combinations allows solving an important problem of modeling of non-uniform images. In work some options of such combinations, allowing imitating images of natural and artificial objects are shown. For modeling of images sequences the algorithm allowing on set correlation characteristics and the first shot to form sequence of any size is offered.
Pages: 12-15
References

 

  1. Woods J.W. Two-dimensional Kalman filtering // Topics in Applied Physics. Berlin. 1981. V. 42. R. 155-208.
  2. Prehtt U. Cifrovaja obrabotka izobrazhenijj: per. s angl. M., 1982. Kn. 1 i 2.
  3. KHabibi A. Dvumernaja bajjesovskaja ocenka izobrazhenijj A. KHabibi // TIIEHR. 1972. №7. S. 153-159.
  4. Vasilev K.K., Omelchenko V.A. Prikladnaja teorija sluchajjnykh processov i polejj. Uljanovsk: UGTU. 1995.
  5. Vasilev K.K., Krasheninnikov V.R. Statisticheskijj analiz mnogomernykh izobrazhenijj. Uljanovsk: UlGTU. 2007.
  6. Vasilev K.K., Krasheninnikov V.R., Sinicyn I.N., Sinicyn V.I. Predstavlenie i bystraja obrabotka mnogomernykh izobrazhenijj // Naukoemkie tekhnologii. 2002. № 3. S. 4-24.
  7. Zavalishin N.V., Muchnik I.B. Modeli zritelnogo vosprijatija i algoritmy analiza izobrazhenijj. M.: Nauka. 1974.
  8. Bondur V.G. Modelirovanie mnogospektralnykh aehrokosmicheskikh izobrazhenijj dinamicheskikh polejj jarkosti // Issledovanie Zemli iz kosmosa. 2003. № 2. S. 3-17.
  9. Vasilev K.K., Popov O.V. Avtoregressionnye modeli sluchajjnykh polejj s kratnymi kornjami // Trudy 4-jj konf. «ROAI: novye informacionnye tekhnologii». Novosibirsk, 1998. CH. 1. S. 258-260.
  10. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenijj. M.: Tekhnosfera. 2005.
  11. SHalygin A.S., Palagin JU.I. Prikladnye metody statisticheskogo modelirovanija. M.: Mashinostroenie. 1986.
  12. Patent na izobretenie №2476933. Zaregistrirovan 27.02.2013. Vasilev K.K., Luchkov N.V. Sposob modelirovanija izobrazhenijj s izmenjajushhimisja korreljacionnymi svojjstvami.
  13. Vasilev K.K., Dementev V.E. Modeli izobrazhenijj iskusstvennykh obektov // Trudy RNTOEHS imeni A.S. Popova. M. 2011. S. 232-234.
  14. Uilkinson R. Spravochnik po algoritmam na jazyke ALGOL. Linejjnaja algebra: per. s angl. / pod red. JU.I. Topcheeva. M.: Mashinostroenie. 1976.