350 rub
Journal Science Intensive Technologies №4 for 2013 г.
Article in number:
Convergence of regular interpolation and local interpolation bases
Authors:
V.N. Isakov
Abstract:
At regular interpolation on each individual interval of sampling interpolation the curve is formed by identical rules. Such interpolation is considered examined, at which the conditions of a coordination (diagram of interpolation function are carried out passes through units of interpolation), linearity (at addition of discrete signals them interpolation functions are develop), convergence (at unlimited reduction of a step of sampling the interpolation function comes nearer to a restored signal). For a signal with the limited spectrum the task of interpolation has the unique decision determined by the theorem of Kotelnikov. However restoration of signals on the basis of a Kotelnikov series meets significant difficulties at physical realization. In practice there are more preferably local methods of interpolation, that causes a urgency of consideration of a question about convergence of interpolation process. It is possible to show, that the convergence of interpolation process at restoration of a signal with the limited spectrum is provided, if the method of interpolation carries out exact restoration of unit. The class of functions satisfying to a condition of restoration units, closes concerning Fourier-transformation. To a condition of convergence satisfy, for example, step interpolation, piecewise-linear interpolation, -interpolation, local interpolation with the Lagrange polynomial, local spline-interpolation.
Pages: 40-46
References
  1. Denisenko A.N., Isakov V.N. Primenenie razlichnykh metodov vosstanovlenija nepreryvnykh signalov po ikh diskretnym znachenijam // Radiotekhnika. 2001. №10. S. 16-20.
  2. Denisenko A.N., Isakov V.N. Sravnitelnyjj analiz metodov vosstanovlenija nepreryvnykh signalov po ikh diskretnym znachenijam, osnovannykh na lokalnykh splajjnakh razlichnojj stepeni gladkosti // Voprosy povyshenija ehffektivnosti radioehlektronnykh sistem: mezhvuzovskijj sbornik nauchnykh trudov. M., 2001. S. 101-106.
  3. Denisenko A.N., Isakov V.N. Metody spektralnogo analiza diskretnykh signalov // Sb. trudov 51-jj nauchno-tekhnich. konf. MIREHA. CH. II. Fiziko-matematicheskie nauki. Tekhnicheskie nauki. M. 2002. S. 90-94.
  4. Denisenko A.N., Isakov V.N. Metody splajjnovojj interpoljacii signalov // Sb. trudov 52-jj nauchno-tekhnich. konf. MIREHA. CH. 2. Fiziko-matematicheskie nauki. M. 2003. S. 79-84
  5. KHurgin JA.I., JAkovlev V.P. Finitnye funkcii v fizike i tekhnike. M.: Nauka. Gl. red. fiziko-matematich. lit-ry. 1971.
  6. CHui CH. Vvedenie v vehjjvlety / per. s angl. M.: Mir. 2001.