350 rub
Journal Science Intensive Technologies №1 for 2013 г.
Article in number:
The synthesis of natural photo-transforming photochrome protein bacteriorhodopsin from purple membranes of halobacterium Halobacterium Halobium
Authors:
O.V. Mosin, I. Ignatov
Abstract:
Bacteriorhodopsin - photo-transforming transmembran protein with molecular mass 26,7 kDa representing chromoprotein connected with the Schiff base at the lysine-216 residue with a chromophore group consists of equimolar mixture of 13-cys- and completely 13-trance-retinol С20-carotenoid - analogue of the vitamin A, defining purple-red colour of halobacteria. Despite the structurall-functional level and organization of bacteriorhodopsin in purple membranes of halobacteria is well studied, bacteriorhodopsin still remains in the focus of attention of bio-and nanotechnology because of high photosensitivity and resolution, and, therefore, it is used in molecular bioelectronics as a natural photochrome material as operated light or electric impulses in computer modules and optical systems. Besides, bacteriorhodopsin seems to be very attractive as modelling object for the research connected with the studying of functional activity and structural properties of photo-transforming membrain proteins as a part of artificial native energo- and photo-transforming membranes. Bacteriorhodopsin was allocated in micropreparative amounts (810 mg) from purple membranes of halobacterium Halobacterium halobium by cultivation of the halobacterium on special selected synthetic growth medium, breaking down of cell by osmolysis in distillid water, processing of bacterial biomass by ultrasound at 22 kHz (5 min), ribonuclease tratment, ethanol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, and the subsequent solubilization of final protein with 0.5% SDS-Na and its fractionation by methanol. The homogenity of bacteriorhodopsin was proved by combination of preparative and analytical protein methods including elecrtophoresis in 12.5% PAAG with 0.1% SDS-Na and gel filtration chromatography on Sephadex G-200.
Pages: 52-59
References
  1. Oesterhelt D., Stoeckenius W. Rhodopsin - like protein from the purple membrane of Halobacterium halobium // Nature. 1971.  V. 233. № 89. P. 149 - 160.
  2. Hampp N., Oesterhelt D. Bacteriorhodopsin and its Potential in Technical Applications / in: Nanobiotechnology (Ch. Niemeyer and C. Mirkin, eds.). Weinheim: Wiley-VCH-Verlag. 2004. P. 146 - 167.
  3. Мосин O. В., Складнев Д. А., Швец В. И. Включение дейтерированных ароматических аминокислот в молекулу бактериородопсина Halobacterium halobium // Прикладная биохимия и микробиология. 1999. Т. 35. № 1. C. 34 - 42.
  4. Vought B. W., Birge R. R. (eds.) Molecular electronics and hybrid computers / in:Wiley Encyclopedia of Electrical and Electronics Engineering. New-York: Wiley-Interscience. 1999. P.477 - 490.
  5. Lanyi J.K. Understanding structure and function in the light-driven proton pump bacteriorhodopsin // Journal of Structural Biology. 1998. V. 124. P. 164 - 178.
  6. Мосин О.В., Складнев Д.А., Егорова Т.А., Швец В.И. Получение бактериородопсина H. halobium, меченного дейтерием по остаткам ароматическим аминокислот фенилаланина, тирозина и триптофана // Биотехнология. 1996. № 10. С. 24 - 40.
  7. Grigorieff N. Electron-crystallographic refinement of the structure of bacteriorhodopsin // Journal of Molecular Biology. 1996. V. 259. P. 393-421.
  8. Oesterhelt D. Bacteriorhodopsin as an Example of a Light-Driven Proton Pump // Angewandte Chemie. 1976. Vol. 15 (1). P. 16 - 24.
  9. Haupts U., Tittor J., Bamberg E., Oesterhelt D. General Concept for Ion Translocation by Halobacterial Retinal Proteins: The Isomerization/Switch/Transfer Model // Biochemistry. 1997. V. 36. № 2-7. P. 78 - 85.
  10. Mosin O.V., Karnaukhova E.N., Pshenichnikova A.B., Reshetova O.S. Electron impact mass-spectrometry in bioanalysis of stable isotope labeled bacteriorhodopsin / in: 6th Intern. Conf. on Retinal proteins. Leiden: Elsevier. 1994. P. 115.