350 rub
Journal Science Intensive Technologies №1 for 2013 г.
Article in number:
Portable power sources with direct oxidation of formic acid on the basis of porous silicon nanocomposites with palladium
Authors:
N.A. Yashtulov, A.A. Revina, L.N. Patrikeev, M.V. Lebedeva, V.R. Flid
Abstract:
The article is devoted to the use of formic acid as a fuel for portable energy sources on the basis of porous silicon with palladium nanoparticles. The prospects of the use of this kind of fuel, due to the high and electrochemical characteristics, is obvious. The use of palladium nanoparticles prevents the formation of catalytic poison - the main acceptor low efficiency of the catalyst. For the stabilization of the catalysts was selected porous silicon, which allows to prevent agglomeration of nanoparticles. The article presents the data on the characteristics of nanocomposites palladium/porous silicon in the reaction of formic acid oxidation. A characteristic feature of the catalysts for palladium with a substrate of porous silicon n - and p-type conductivity is an increase in the catalytic activity of the samples obtained by the method of deposition of the γ-irradiation, as well as the increase of the catalytic activity of catalysts with n-type relative to a p-type porous silicon. Revealed the superiority of samples palladium/porous silicon n-type, obtained by the method of deposition of the γ-irradiation on commercial samples of the soot on electrochemical indicators. It is proved, that the reduction in the size of palladium nanoparticles contributes to the growth of the nanocomposites palladium/porous silicon catalytic activity.
Pages: 21-24
References
  1. Yu X., Pickup P.G. Recent advances in direct formic acid fuel cells (DFAFC) // J. Power Sources. 2008. V. 182. № 1. P. 124 - 132.
  2. Zhu Y., Ha S., Masel R.I. High power density direct formic acid fuel cells // J. Power Sources. 2004. V. 130. № 1 - 2; P. 8 - 14.
  3. Ha S., Larsen R., Zhu Y., Masel R.I. Direct formic acid fuel cells with 600 mA/cm2 at 0.4 V and 22oC // Fuel Cells. 2004. V. 4. № 4. P. 337 - 343.
  4. Zhu Y., Khan Z., Masel R.I. The behavior of palladium catalysts in direct formic acid fuel cells // J. Power Sources. 2005. V. 139. № 1 - 2. P. 15 - 20.
  5. Zhou X.C., Xing W., Liu C.P., Lu T.H. Platinum-macrocycle co-catalyst for electro-oxidation of formic acid // Electrochem. Commun. 2007. V. 9. № 7. P. 1469 - 1473.
  6. Lee H., Habos S.E., Somorjai G.A., Yang P. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid // J. Am. Chem. Soc. 2008. V. 130. № 16. P. 5406 - 5407.
  7. Winjobi O., Zhang Z., Liang C., Li W. Carbon nanotubes supported platinum-palladium nanoparticles for formic acid oxidation // Electrochem. Acta. 2010. V. 55. P. 4217 - 4221.
  8. Pap A. E., Kordas K., Peura R., Leppavuori S. Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation // Applied Surface Science. 2002. V. 201. № 1 - 4. P. 56 - 60.
  9. Yeom J., Mozsgai G.Z., Flachsbart B.R., Choban E.R., Asthana A., Shannon M.A., Kenis P.J.A. Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid // Sensors and Actuators B: Chemical. 2005. V. 107. № 2. P. 882 - 891.
  10. Chen F., Chang M.H., Lin M.K. Analysis of membraneless formic acid microfuel cell using a planar microchannel // Electrochem. Acta. 2007. V. 52. № 7. P. 2506 - 2514.
  11. Yeom J., Jayashree R.S., Rastogi C., Shannon M.A., Kenis P.J.A.Passive direct formic acid microfabricated fuel cells // J. Power Sources. 2006. V. 160. № 2. P. 1058 - 1064.
  12. Яштулов Н.А., Гаврин С.С., Ревина А.А., Флид В.Р. Формирование нанокомпозитных катализаторов палладия на пористом кремнии для анодов топливных элементов // Изв. РАН. Сер. хим. 2010. № 8. C. 1450 - 1455.
  13. Яштулов Н.А., Гаврин С.С., Бондаренко В.П., Холостов К.И., Ревина А.А., Флид В.Р. Формирование нанокомпозитных катализаторов платины на пористом кремнии // Изв. РАН. Сер. химическая. 2011. № 3. C. 425 - 430.
  14. Яштулов Н.А. Нанотехнология формирования электродов источников тока для радиоэлектроники // Наукоемкие технологии. 2011. Т. 12. № 6. С. 44 - 47.
  15. Яштулов Н.А., Гаврин С.С., Танасюк Д.А., Ермаков В.И., Ревина А.А.Синтез и контроль размеров наночастиц палладия в жидкой фазе и в адсорбированном состоянии // ЖНХ. 2010. Т.55 № 2. С.180 - 184.
  16. Choi J.H., Noh S.Y., Han S.D., Yoon S.K., Lee C.S., Hwang T.S., Young W.R. Formic acid oxidation by carbon-supported palladium catalysts in direct formic acid fuel cell // Korean J. Chem. 2008. V. 25. № 5. P. 1026 - 1030.