350 rub
Journal Science Intensive Technologies №8 for 2012 г.
Article in number:
Reference model of the source voice messages based on Gaussian mixtures
Authors:
D.N. Chubaty
Abstract:
Determine the personality of the speaker system on the individual characteristics of the speech developing very actively. This is due to the presence of a wide range of practical problems which can be used in these systems: verification of access rights, forensic examination, remote access to databases and the bank accounts. Recently, large distribution network were using low speed speech coding: satellite, trunking, cellular communications systems, as well as IP-telephony network. The application of existing method of identification person by voice in these networks is not possible. This requires the development of new models, method sand algorithms for speech signal processing, low-speed converted speech coder. Presented in the paper reference model of the source voice messages based on Gaussian mixtures confirmed the possibility of using parameters that are passed within the frame coder RPE-LTP as a vector of distinctive features and identity of the caller without decoding the signal.
Pages: 23-27
References
  1. Рабинер Л. Р., Шафер Р. В.Цифровая обработка речевых сигналов: / пер. с англ. / под ред. М. В. Назарова и Ю. Н. Прохорова. М.: Радио и связь. 1981.
  2. Первушин Е. А.Обзор основных методов распознавания дикторов / под ред. А. К. Гуца// Математические структуры и моделирование: Сб. науч. трудов (Омск). Вып. 24. 2011. С. 41 - 54.
  3. Campbell J. P. Speaker recognition // Proceedings of the IEEE. September 1997. V. 85. № 9. P. 1437 - 1462.
  4. Тимофеев Д. И.Анализ современного состояния и перспектив применения речевых сигналов с низкоскоростным кодированием в цифровых системах передачи информации // Сборник рефератов депонированных рукописей. Сер. Б. Вып. 61.
    М: ЦВНИМОРФ. 2002.
  5. Reynolds D. A., Rose R. C. Robust text-independent speaker identification using Gaussian mixture speaker models // IEEE transaction on speech and audio progressing. January 1995. V. 3. № 1. P. 72 - 83.
  6. Садыхов Р. Х., Ракуш В. В. МоделиГауссовых смесей для верификации диктора по произвольной речи // Докл. Белорусского государственного университета информатики и радиоэлектроники. Минск. 2003. С. 95 - 103.
  7. Chow D., Abdulla W. H. Robust speaker identification based on perceptual log area ratio and Gaussian mixture models // INTERSPEECH 2004, 8th International Conference on Spoken Language Processing, Jeju Island, Korea., 4 - 8 October. 2004.  P. 1761 - 1764.
  8. Маркел Дж. Д., Грэй А. Х. Линейное предсказание речи: пер. с англ. / под ред. Ю. Н. Прохорова и В. С. Звездина. М.: Связь. 1980.
  9. ETSI/TC SMG. Recommendation GSM 6.10. GSM full rate speech transcoding. February 1992.