350 rub
Journal Science Intensive Technologies №6 for 2012 г.
Article in number:
Stability research of discrete controlled systems on the basis of soft lyapunov functions
Authors:
S.N. Petrova
Abstract:
Stability conditions for discrete systems of intelligence control is investigated on the basis of the properties of bilinear matrix inequalities and Lyapunov functions method. Under the stability conditions positive definite matrices belonging to different predicate rules are aggregated into a single inequality. Suggested sta¬bi¬lity and stabilization conditions can be used in the problems of development of technologies of design and improvement of complex dynamical systems and in problems of provision of safety functioning of technical objects.
Pages: 27-32
References
  1. Петрова С.Н. Об использовании параметризованных линейных матричных неравенств для синтеза и стабилизации нечет­ких систем управления // Труды Международной конференции «Управление в технических системах». СПб.: ГНЦ РФ ЦНИИ «Электроприбор». 2010. С. 127-128.
  2. Петрова С.Н. Анализ устойчивости дискретных управляемых систем с неполной информацией // Наукоемкие технологии. 2012. № 1. Т. 13. С. 42-46.
  3. Han Z.X., Feng G., Walcott B.L. and Ma J. Dynamic output feedback controller design for fuzzy systems // IEEE Transactions on Systems, Man and Cybernetics. 2000. Part B. V. 30. № 1. P. 204-210.
  4. Wang W.J., Yan S.F. and Chiu C.H.Flexible stability criteria for a linguistic fuzzy dynamic system // Fuzzy Sets and Systems. 1999. V. 105. P. 63-80.
  5. Yoneyama J., Masahiro N., Hitoshi K. and Akria I. Output stabilization of Takagi-Sugeno fuzzy systems // Fuzzy Sets and Systems. 2000. V. 111. P. 253-266.
  6. Tanaka K., Wang H.O. Fuzzy control systems, design and analysis: a linear matrix inequality approach // N.Y.: John Wile., 2001.
  7. Tanaka K., Ikeda Т., Wang H.O. Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs // IEEE Trans. Fuzzy Syst. 1998. V. 6. P. 250-265.
  8. Wang H.O., Tanaka K., Griffin M.Parallel distributed compensation nonlinear systems by Takagi and Sugeno-s fuzzy model // Proc. of FUZZ-IEEE-95. 1995. P. 531-538.
  9. Wang H.O., Tanaka K., Griffin M. An approach to fuzzy control of nonlinear systems: stability and design issues // IEEE Trans. Fuzzy Syst. 1996. V. 4. № 1. P. 14-23.