350 rub
Journal Science Intensive Technologies №5 for 2012 г.
Article in number:
Researching of new diaphragm materials for low temperature alkaline electrolyzers
Authors:
N.V. Kuleshov, V.N. Kuleshov, A.N. Bakhin, S.A. Dovbysh
Abstract:
Work is devoted to researching of new highly effective diaphragm materials for low temperature alkaline electrolyzers, possessing high conductivity, chemical and thermal stability in relation to concentrated (6 M) hot (till 95-98˚С) electrolite solutions, gas-tight and high mechanical characteristics. A significant amount of the works devoted to creation diaphragm materials for low temperature alkaline electrolyzers is known. As a rule, all materials on the basis of the modified asbestos, ceramic diaphragms, materials on a polymeric basis possess or insufficient stability in operating conditions, or the lowest conductivity. As a result of studying of the literary data, as object of researches diaphragms with a polymeric matrix on a basis polysulfone PSF-150 have been chosen. Polymeric diaphragms synthesized a method of phase inversion. Polysulfone was dissolved in DMA. In separate volume prepared suspension hydrophilous a filler (TiO2 or Sb2O5-nH2O) in DMA. In some variants to a solution of polysulfone added PVP. On a basis polysulfone matrixes with addition of the pore-forming agent PVP and hydrophilous fillers TiO2 and Sb2O5-nH2O a method of phase inversion are synthesized the diaphragms, different high specific conductivity (2.92-10-1 Om-1?sm-1 in 6М), high chemical and physical stability. As a result of carrying out of a complex of researches by physical and physical and chemical methods, influence of conditions of carrying out of phase inversion and structure of diaphragms on their final characteristics is established. Also it is established that the maximum influence on conductivity of diaphragms the maximum porosity, distribution of a time on radiuses, the nature and quantity hydrophilous filler and pore-forming agent.
Pages: 39-48
References
  1. Кулешов Н.В., Григорьев С.А., Фатеев В.Н. // Электрохимические технологии в водородной энергетике . МЭИ. 2007. С. 27-28.
  2. Кулешов Н.В., Кулешов В.Н., Бахин А.Н. Разработка новой элементной базы для щелочных электролизеров воды // Естественные и технические науки. 2011. №6. С. 73-78.
  3. MontoneriЕ. // Int. J. Hydrogen Energy. 1989. V. 14. P. 29-33.
  4. Van Der Stegen IrH G. // J. Appl. Electrochem. 1989. V. 19. Р. 541-579.
  5. Malinowski P., Divisek J. // Диафрагма на основе оксида никеля для электролиза щелочных растворов и способ ее изготовления // Заявка 3318758, ФРГД984.
  6. Leysen R., Vandenborre H. // Reun. Soc. Int. Electrochem. 1982. Р. 422-424.
  7. Sodaye H.S., Bindal R.C., Dey T.K., Misra B.M. // International Journal of Polymeric Materials. 2005. V.53. P. 73-70.
  8. Fateev V.N., Grigoriev S.A., Kulikova L.N., Porembskiy V.I., Tunold R., Borresen B., Rasten E., Hagen G. // Hydrogen production by electrolysis: Proc. of the ICHMS-01 International Conference. Alushta, 2001. P. 788-791.
  9. www.porotech.net
  10. Leysen R., Vandenborre H. // Reun. Soc. Int. Electrochem. 1982. V. l. P. 422-424.