350 rub
Journal Science Intensive Technologies №9 for 2011 г.
Article in number:
Kyaw Thant Zin, Yu.S. Belov, B.M. Loginov
Authors:
Peculiarities of dissociated dislocations cross sliding processes in cubic face-centered crystals
Abstract:
The dissociated dislocation cross sliding processes simulation in faced centered cubic crystals was carried out. The analysis was lead by molecular dynamics methods. Physical system parameters corresponded to aluminum and cooper crystals. Regularities of perfect dislocation dissociation characteristics influence on the energetic and dynamics of cross sliding process were received and analyzed. It was established that in aluminum crystals the width of stacking fault between partial dislocations corresponds to the value of perfect dislocation Burgers vector meanwhile the level of the cross sliding process energy barrier is about 1 eV; in cooper crystals the width of stacking fault by order of magnitude greater the value of perfect dislocation Burgers vector meanwhile the level of the cross sliding process energy barrier is about 5 eV.
Pages: 53-57
References
  1. Devincre B., Kubin L.P. Mesoscopic simulations of dislocations and plasticity // Materials Science and Engineering. 1997. V. A234-236. P. 8 - 31.
  2. Yasin H., Zbib H.M., Khaleel M.A. Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element // Materials Science and Engineering. 2001. V. A309-310. P. 294 - 307.
  3. Khraishi T.A., Zbib H.M.Free surface effects in 3d dislocation dynamics: formulation and modeling // J. Eng. Mat. Tech. (JEMT). 2002. V. 124. № 3. P. 342 - 354.
  4. Schwarz K.W. Simulation of dislocations on the mesoscopic scale // Journal of Applied Physics. 1999. V. 85. № 1. P. 108 - 119.
  5. Schwarz K.W. Discreet dislocation dynamics study of strained-layer relaxation // Phys. Rev. 2003. V. 91. № 14. P. 145503 - 145506.
  6. Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат. 1972. 599 с.
  7. Schmid A.K., Bartelt N.C., Pohl K. Determination of buried dislocation structures by scanning tunneling microscopy // Phys. Rev. 2001. V. 63B. P. 165431(11).
  8. Margulies L., Wither G., Pousen H.F. In situ measurement of grain rotation during deformation // Science. 2001. V. 291.
    P. 2392 - 2406.
  9. Balk T.J., Hemker K.J. High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium // Phil. Mag. 2001. V. 81. P. 1507 - 1522.
  10. Devincre B., Kubin L.P. The modelling of dislocation dynamics: Elastic behavior versus core properties. Philosophical Transactions // Mathematical, Physical and Engineering Sciences. 1997. V. 355. № 1731. P. 2003 - 2021.
  11. Jacobsen K.W., Puska M.J. Interatomic interaction in the effective medium theory // Phys. Rev. 1987. V. 35. P. 7423 - 7435.
  12. Jackobsen K.W., Stoltze P., Hasen L.B.Many-atom interactions in metals // Surface Science. 1996. V. 366. P. 394 - 407.
  13. Stoltze P. 17 Simulation methods in atomic-scale materials physics. N.Y.: Lyngby. 1997. 452 p.