350 rub
Journal Science Intensive Technologies №9 for 2011 г.
Article in number:
Topological and radiation imperfections influence on elastic characteristics of carbon nanotubes
Authors:
Nyi Nyi Hlaing, S.A. Ginzgeymer, Yu.S. Belov, Tin Ko Ko Win, A.N. Proskurnin, B.M. Loginov
Abstract:
The computer simulation of the stressedly-deformed state of carbon nanotubes with topological and radiation defects have been conducted. The examination was carried out in quasi-dynamic approach by finding nanotubes equilibrium configurations for different level of deformations. The carbon nanotubes mechanical characteristics dependences on density of different type defects and peculiarities of their distribution was received and analyzed. The typical regularities in nanotubes Young-s modulus and relative weakening dependences on density and type of the defects, connected with stepped variation of derivative of mentioned input-output dependencies by defects density reaching its critical value have been established; it has been shown that radiation defects influence on carbon nanotubes mechanical characteristics is practically independent on nanotubes chirality.
Pages: 45-52
References
  1. Yakobson B.I., Brabec C.J., Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response // Physical Review letters. 1996. V. 76. P. 2511 - 2519.
  2. Tu Z.C., Yang Z.C. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young-s moduli dependent on layer number // Physical Review. 2002. V. 65 B. P. 233407 - 233511.
  3. Salvetat J.P., Briggs G., Bonard J.M., Basca R., Kulik A. T. Elastic and shear moduli of single-walled carbon nanotube ropes // Physical Review Letters. 1999. V. 82. P. 944 - 952.
  4. Salvetat J.P., Kulik A.J., Bonard J.M., Briggs G. Elastic modulus of ordered and disordered multiwalled carbon nanotubes // Advanced Materials. 1999. V. 11. P. 161 - 173.
  5. Xie S., Li W., Pan Z., Chang B., Sun L. Mechanical and physical properties on carbon nanotube // Journal of Physics and Chemistry of Solids. 2000. V. 61. P. 1153 - 1161.
  6. Demczyk B.G., Wang Y.M., Cumings J., Hetman M., Han W., Zettl A., Ritchie R.O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes // Materials Science and Engineering. 2000. V. 334 A. P. 173 - 186.
  7. Wei C., Cho K., Srivastava D. Tensile strength of carbon nanotubes under realistic temperature and strain rate // Physical Review. 2003. V. 67 B. P. 115407 - 115516.
  8. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous-carbon // Phys. Rev. Lett. 1988. V. 61. № 25. P. 2879 - 2882.
  9. Brenner D.W. The art and science of an analytic potential // Phys. Status Solidi. 2000. V. 217. № 1.  P. 23 - 40.
  10. Белов Ю.С., Ньи Ньи Лайнг, Тин Ко Вин, Логинов Б.М. Квазидинамическая модель моделирования механических свойств углеродных нанотрубок // Труды МГТУ. Методы исследования и проектирования сложных технических систем. М.: МГТУим. Н.Э. Баумана. 2009. Т. 598.  С. 19 - 33.
  11. Ziegler J.F., Biersack J.P., Littmark U. In the stopping and range of ions in matter. N.-Y.: Pergamon. 1995. 437 p.