350 rub
Journal Science Intensive Technologies №9 for 2011 г.
Article in number:
Halogens - chemisorption influence on elastic characteristics of carbon nanotubes
Authors:
Zaw Ye Aung, S.A. Ginzgeymer, A.A. Smirnov
Abstract:
The analysis of the stressedly-deformed state of carbon nanotubes chemisorbed by different halogens have been conducted by computer simulation methods. The examination were carried out in quasi-dynamic approach by finding nanotubes equilibrium configurations for different level of deformations. The peculiarities of chemisorption influence on configurationally and mechanical characteristics of carbon nanotubes have been received and analyzed. It was established, that halogen chemisorption at external surface of nanotubes led to its stiffness increasing and the higher values of Young-s modulus are achieved for halogens with lower serial numbers; it has been shown that for every type of halogen there exist the interval of their density values in the range of which the liner dependence between Young-s modulus and density is fulfilled.
Pages: 41-44
References
  1. Star A., Stoddart J., Steuerman D. Preparation and properties of polymer-wrapped single-walled carbon nanotubes // Angewandte Chemie International Edition. 2001. V. 40. № 9. P. 1721 - 1725.
  2. Fisher F.T., Bradshaw R.D., Brinson L.C. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers // Applied Physics Letters. 2002. V. 80. № 24. P. 4647 - 4649.
  3. Zhu J., Kim J., Peng H., Margrave J. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization // Nano Letters. 2003. V. 3. № 8. P. 1107 - 1113.
  4. Meincke O., Kaempfer D., Weickmann H., Friedrich C.Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with crylonitrile-butadiene-styrene // Polymer. 2004. V. 45. P. 739 - 748.
  5. Haggenmueller R., Du F., Fischer J., Winey K.Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites // Polymer. 2006. V. 47. P. 2381 - 2388.
  6. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous-carbon // Phys. Rev. Lett. 1988. V. 61. № 25. P. 2879 - 2882.
  7. Brenner D.W. The art and science of an analytic potential // Phys. Status Solidi. 2000. V. 217. № 1. P. 23 - 40.
  8. Harrison J.A., Chapline M.G., Dai H.J.Functionalized carbon nanotubes for molecular hydrogen sensors // Adv. Mater. 2001. V. 13. № 18. P. 1384 - 1386.
  9. Белов Ю.С., Ньи Ньи Лайнг, Тин Ко Вин, Логинов Б.М. Квазидинамическая модель моделирования механических свойств углеродных нанотрубок // Труды МГТУ. Методы исследования и проектирования сложных технических систем. М.:
    МГТУ им. Н.Э. Баумана. 2009. Т. 598. С. 19 - 33.
  10. Зо Е Аунг,  Гинзгеймер С.А. Методология расчета энергетических характеристик процессов хемосорбции галогенов на поверхности углеродных нанотрубок // Труды МГТУ. Методы исследования и проектирования сложных технических систем. М.: МГТУим. Н.Э. Баумана. 2010. Т. 600. С. 54 - 65.