350 rub
Journal Science Intensive Technologies №7 for 2011 г.
Article in number:
Molecular diffusion processes during the formation of organic planar nanostructures based on phthalocyanines
Authors:
L.A. KONDRACHENKO, E.S. LEONOV, P.A. LUCHNIKOV, L.G. PAKHOMOV , V.V. TRAVKIN
Abstract:
Technology of layered organic semiconductor planar structures provides for a consistent deposition of individual components or composite layers. Molecular doping of matrix high-molecular organic layer by low-molecular organic compounds (dopants) from neighboring layer occurs in the process. When passing from conventional thin-film structures to the nanosize ones the role of diffusion processes is increased as diffusion time of atoms and molecules in conjunction layers is drastically decreased. This paper describes how to determine diffusion coefficients of low-weight molecular organic substances (dopanta) in organic semiconductor film matrix based on vanadil phthalocyanine. A method based on three-dimensional integrated electrical conductivity σ of planar double layered nanostructures, changing by the diffusive dopant penetration of dopant molecules in the original film. This assumes that the value of σ is directly proportional to the number of dopant molecules (concentration) which is passed through the interface between original film of organic matrix semiconductor and dopant layer on its surface. According to the obtained experimental dependencies of σ versus time t and processing of modeling data diffusion coefficients with a high enough precision for practice are calculated.
Pages: 25-33
References
  1. Colombier I.,  Spagnoli S.,  Corval A.,  Baldeck P.L.,  Giraud M., Leaustic A. Strong Photomechanical Effects in Photochromic Organic Microcrystals // Molecular Crystals and Liquid Crystals. 2005. V. 431. Р. 495-499.
  2. Kobatake S., Takami S., Muto H., Ishikawa T., Irie M. Rapid and reversible shape changes of molecular crystals on photoirradiation // Nature. 2007. V. 446. Р. 779-780.
  3. Dei A., Gatteschi D., Sangregorio C., Sorace L.  Quinonoid Metal Complexes: Toward Molecular Switches // Acc. Chem. Res. 2004. № 11. Р. 827-835.
  4. Pan Y.L., Wu Y.J., Chen L.B. Structure and spectroscopic characterization of polycrystalline vanadyl phthalocyanine (PcVO) films fabricated by vacuum deposition// J. Appl. Phys. A. 1998. V. 66. P. 569-573.
  5. Eaton P., Vasanthan N., Shin I.D.Formation and Characterization of Polypropylene - Urea Inclusion Compounds // J. Macromolecules. 1996. V. 29. P. 2531-2536.
  6. Травкин В.В.,  Кондраченко Л.А., Леонов Е.С., Пахомов Л.Г., Лучников А.П. Исследование молекулярной диффузии в тонких пленках фталоцианинов. Фундаментальные проблемы радиоэлектронного приборостроения.М.: Энергоатомиздат. 2009. Ч. 1. С. 33-39.
  7. Леонов Е.С., Пахомов Л.Г., Кондраченко Л.А., Лучников А.П., Травкин В.В. Диффузия низкомолекулярных допантов в тонких пленках фталоцианина ванадила // Вестник Нижегородского университета им. Н.И. Лобачевского. 2009. № 5. С. 103-108.
  8. Леонов Е.С., Лучников П.А., Пахомов Л.Г., Травкин В.В. Особенности формирования планарных наноструктур на основе молекулярно-легированного фталоцианина ванадила // Наноматериалы и наноструктуры. 2010. Т.1. № 2. С. 58-64.