350 rub
Journal Science Intensive Technologies №3 for 2011 г.
Article in number:
INVESTIGATION OF FAST PROCESSES OF ELECTRON-OPTICAL CAMERAS
Authors:
A.S. Sigov, M.A. Karpov, V.I. Nefedov, N.A. Trefilov, S.E. Zheleznova, O.U. Mamaeva
Abstract:
Among the diagnostic tools used in modern experimental physics to the study of fast processes (BPP), high-speed electro-optical picture stands high speed (theoretical limit of temporal resolution of 10-14), a large amount of spatial information simultaneously recorded (up to 106 ... 108 resolvable elements) , the maximum sensitivity (recorded every electron emitted by the photocathode), wide spectral band registration (soft X-rays to near infrared radiation), the ability to quickly enter the registered images into a computer for their subsequent storage, processing, visualization and analysis. The core of high-speed electro-optical camera is a pulsed electron-optical converter (EOC), in which the space-time coding and selection phase of the process. Such converters for high-speed image management electron beams include high-speed electromagnetic scanning system and electronic gates. At the present time in Russia and abroad have been intensively studied the possibility of using microwave (MW) gas discharges in various fields of science and technology. Possible applications of the streamer discharge forms are defined by their specific properties: the absorption efficiency of microwave radiation in such a discharge is close to 100%. Discharge develops in the form of spatial structure consisting of alternating sequences of interrelated elements of the streamer, when the electrodynamic resonance they explode. But for the effective use of bits in applications requires quantitative studies of processes of their formation. This requires equipment that has the characteristics that allow capture processes with a temporal resolution in the microsecond and nanosecond ranges. To register development luminous structure of the microwave streamer discharge in the spectral range 400 ... 800 nm was used miniature programmable electro-optical camera, which provides independent duration of each frame and each interframe breaks ranging from 10 ns to 1 ms in steps of 10 ns and the gain is not less than 104. The methodology of measurement was as follows. In the area of focus was placed the type of initiator, installs a given level of pressure in the vacuum chamber and the experiment was chosen level of the field is equal to the critical value Ecr at a given pressure. Front and rear front of the microwave pulse has the time scale of about 2 microseconds. Development of the discharge starts from the pole of the initiating vibrator. Discharge propagates in the focusing antenna from the body surface on which it occurs. Results of the study the initial stage of streamer microwave discharge with electron-optical camera K011 possible to identify the main stages in the formation of the initial streamer channel and reveal the dependence of time constants of the main stages of the external parameters of the experiment. Creating a reliable physical and engineering models of the sequence of the leader-return stroke of lightning and the process of destruction of its facilities, in which it falls, is complicated by the lack of factual information about the optical picture of weakly streamer patterns of lightning. An alternative to traditional means of recording images of lightning are the electro-optical camera-based image intensifiers [4]. These cameras have yielded new results in studying the processes of streamer length of the spark that enabled us to formulate several hypotheses related to the lightning leader process [5-7]. Studies using complex electro-optical apparatus GIN 6MV adapted to work with lightning and long sparks, carried out during the registration length of high-voltage spark to open the stand. The studies were performed more than 1000 images of digits.
Pages: 35-44
References
  1. Карпов М.А., Нефедов В.И., Захаров А.К. Применение электронно-оптических камер для исследования прохождения колебаний в длинных воздушных промежутках / Сб. докладов V Международной научно-практической конференции. Молодые ученые ? промышленности, науке, технологии и профессиональному образованию: проблемы и новые решения. 29 июня - 3 июля 2005 г. С. 63 - 74.
  2. Грачев Л.П., Есаков И.И., Ходатаев К.В., Цыпленков В.В. Высокочастотный пробой воздуха в присутствии металлического шара // Физикf плазмы. 1992. Вып.3. Т.18. С. 411 - 415.
  3. Гильденбург В.Б., Ким А.В.Ионизационно-перегревная неустойчивость высокочастотного разряда в поле электромагнитной волны // Физика плазмы. 1980. Вып.6. Т.6. С.904 - 909.
  4. Бутcлов М.М., Степанов Б.М., Фанченко С.Д.Электронно-оптические преобразователи и их применение в научных исследованиях. М.: Наука. 1978.С.431.
  5. Gorin B.N., Shkiljov A.V. Picture of lightning discharge which might be seen with the help of image converter camera // Proc. of the 23-rd Int. Congr. On High-Speed Photography and Photonics. Moscow. 1998. SPIE. V. 3516. P. 355-341.
  6. БазелянЭ.М., РайзерЮ.П.Физикамолнииимолниезащиты. М.: Физматгиз. 2001.С. 320.
  7. Koriavin A.R. et al. Application of image converter streak camera FER-14 in investigations on discharges process pattern in long air gaps. SPIE. V. 3516. P.668 - 685 (P.178 - 195 of part 2).
  8. Rakov V.A. Lightning properties from triggered - lightning experiments at Camp-Blanding. Florida (1997-1999). Proc. 25th ICLP. Rhodes. 2000.P. 54 - 59.
  9. Lupeiko A.B., Syssoev V.S. Influence of characteristics of a spark arrester in investigations lightning protection aircrafts on models. The collection of proceedings MPEI. 1990. V. 231. P. 82 - 89.
  10. Les Renardieres Group, Research on Long air gap at Les Renardieres - 1973 Results. Electra. 1974. V. 35. P. 49 - 156.
  11. Lupeiko A.V., Miroshnichenko V.P., Syssoev V.S., Chernov E.N.Features of spark discharge development in long air gap under rectangular voltage pulses, Proceedings of the All-Union Symposium on Gas Discharge (Tartu, Estonia, August, 1984), 2: High Pressure Gas Discharge Origin and Development (in Russian). Р. 259 - 261.
  12. Gorin B.N., Shkilev A.V. Spark discharge development in long gaps underpositive pulse voltage // Elektrichestvo (in Russian). 1974. № 5. P. 29 - 38.
  13. Лебедев Ю.А., Соломахин П.В., Шахатов В.А. // Физика плазмы. 2008. Т.34. №7. С. 614.
  14. Lebedev Yu.A., Mokeev M.V, Solomakhin P.V., Shakhatov V.A., Tatarinov A.V., Epstein I.L. // J. Phys. D: Appl. Phys. 2008. V.41. 194001.
  15. ЛебедевЮ.А., ТатариновА.В., ЭпштейнИ.Л. // Теплофизикавысокихтемператур. 2008. Т. 46. № 5.С. 645.
  16. Shcherbakov Y.V., Lebedev V.B., Rakov V.A., Feldman G.G., Sucharevskij D.I., Gorin B.N., Syssoev V.S., Karpov M.A., Senik A.V. High-speed optical studies of long spark (Istra, Russia) and triggering lightning (Camp Blanding, Florida): Initial results. // SPIE. V. 4948. P. 837 - 845.
  17. Gorin B.N., Karpov M.A., Lebedev V.B., Feldman G.G., Syssoev V.S., Shcherbakov Y.V., Rakov V.A. Development and test of image converter cameras with image intensification for Lightning and long spark study, Collection of scientific papers entitled - The 5th Russian Conference on Atmosphere Electricity?. Vladimir. Russia. V.1.P. 263 - 269.