350 rub
Journal Science Intensive Technologies №2 for 2011 г.
Article in number:
Authors:
М.И. ТРУХАНОВА Кафедра теоретической физики, физический факультет МГУ им. М.В. Ломоносова E-mail: mar-tiv@yandex.ru
Abstract:
The derivation of a general system of the quantum hydrodynamics equation was obtained for the purpose of research of the nonequilibrium processes in the system of the paramagnetic particles with the dipole electrical moment, on the basis of many-particle Schrödinger equation. As a result, the system of the balance momentum equation, the polarization equation, the flux density of polarization equation and the dynamics of the magnetization density equation were found, in consideration of the spin-spin interaction, dipole-dipole interaction and spin-orbit interaction between particles, and also the influence if the short-range forces. The problem of definition of the spin-waves and polarization waves spectrum in the two-dimensional system of the paramagnetic particles with the dipole electric moment, was steed and solved in such system. Striking example of such particle systems can be researches of the gas of the signal molecules of nitric oxide. The existence of the spin-waves, conditionals the strain coefficient, was predicted, in consideration of the finite size of the gas molecules. The possibility of the birth a new wave mode, as a result of the existence dipole electric moment, was predicted. The contribution of the spin-orbit interaction between gas particles to the dispersion of the magnons and surface polariton, which can diffuse under external action, was found.
Pages: 10-25
References

 

  1. Madelung E. // Z. Phys. 1926. V. 40. P. 332.
  2. Кузьменков Л.С., Максимов С.Г. // ТМФ. 1999. Т. 118. № 2. С.287.
  3. Кузьменков Л.С., Максимов С.Г., Федосеев В.В. // ТМФ. 2001. Т. 126. С.136.
  4. Андреев П. А., Л.С. Кузьменков, Труханова М. И. // Динамика сложных систем. 2010. Т. 4. № 1. С.32.
  5. Дрофа М.А., Кузьменков Л.С.// ТМФ. 1996. Т. 108. № 1. С. 3.
  6. Xu L.J., Wu X.G. // Phys. Rev. B. 2006. V. 74. P. 165315.
  7. Oji H.C.A., Mac Donald A.H. // Phys. Rev. B. 2010. V.33. P. 3810.
  8. Batke E., Heitmann D., Tu C.W. // Phys. Rev. B. 1986. V. 34. P.6951.
  9. Tiwari Rakesh P., Stroud D. // submitted to Phys. Rev. B. http://arxiv.org/abs/1003.6092v1. 2010.
  10. Syromyatnikov A. V. // Phys. Rev. B. 2008. V.77. Р.144433.
  11. Shnirman A., Martin I. // Europhys. Lett. 2007. V.78. P. 27001.
  12. Duckheim M., Loss D. // Nature Physics. 2006. V. 2. P. 195.
  13. Ванин А.Ф., Степанов Е.В., Миляев В.А., Селиванов Ю.Г., Розанов Н.Н. // УФН. 1999. Т.170. № 4.
  14. Kendrich K.M., Guevera-Guzman R., Zottilla J., Hinton M.R., Broad K.D., Mimmack M., Ohkura S. // Nature. 1997. V.388. P.670.
  15. Vanin A.F. // Appearance of nitric oxide in animal tissues in vivo
  16. Vanin A.F., Mordvintcev E.I., Kleschyov A.L. // Stud. Biophys. 1984. V.102. № 1. P. 135.
  17. Фарчготта Р., Игнарро Л., Мюрада Ф. // Известия. 1998. № 213. P. 25313.
  18. Делл Т., Орансио О., Шуман Э., и Мадисон Д., Чапман П., Бёме Г. // В мире науки. 1992. № 11-12.
  19. Никколс Дж. Г., Мартин А.Р., Валлас Б. Дж., Фукс П. А. // От нейрона к мозгу. 2008.
  20. Петренко Ю. // Наука и жизнь. 2001. № 7. С.43.
  21. Андреев П.А., Труханова М.И.// Известия вузов. Физика. 2010. (впечати).
  22. Arias R., Chu P., Mills D. L. // Phys. Rev. B. 2005. V.71. P. 224410.