350 rub
Journal Science Intensive Technologies №6 for 2010 г.
Article in number:
Using fuzzy queries to object-characteristic database for a multiscale system
Authors:
A.A. Sorochinsky
Abstract:
There is a large number of specialists, who are involved in the process of describing and analyzing the multiscale system. Each specialist works only with a part of this description, which is stored locally in an object-characteristic database (OCDB). OCDB bases on expert key concepts.
Fuzzy query language can be used to build databases and for data mining.
A fuzzy set is characterized by:
- the range of possible values;
- the type of membership function;
- the parameters of membership function.
There are various types of membership functions curves. The most widely membership functions are: triangular, trapezoidal, Gaussian and g-bell.
It is necessary convert a fuzzy query into a sandart SQL to perform the transaction. It is necessary specify a threshold for the query to get those elements, whose degree of membership is not less than the specified number (α ? level).
Query results generates after calculating of the query match index (QMI). The value calculating depends on logical operations, which were used.
The steps of fuzzy query algorithm:
Input: fuzzy query
1. Converting fuzzy query to a fuzzy SQL-like query
2. Converting fuzzy SQL-like query to a standard SQL query
3. Sending a standard SQL query to the database
4. Getting an answer from the database
5. Calculation QMI for each position of the answer
6. Ranging QMI
Output: Query output
OCDB manages to store and process both numerical and hierarchical descriptions at different semantic levels (with varying degrees of generalization). The using of fuzzy logic in queries provides subspecialists to select the necessary objects or characteristics through certain common characteristics, in terms of natural (spoken) language.
Pages: 55-59
References
- Сорочинский А.А. Объектно-характеристическая база данных. Объединенный научный журнал. Вып. 10 (288). М.: АНП. 2009.
- Воронцов И.Н. Система математических методов машинного моделирования «Взаимодействия». Элементы теории. Институт проблем управления. М. 1979.
- Филиппович Ю.Н., Прохоров А.В. Семантика информационных технологий: опыты словарно-тезаурусного описания. С предисловиемА.И.Новикова. М.: Изд-во МГУП. 2002.
- Codd E.F. A relational model of data for large shared data banks // Communications of the ACM. 1970. V. 13. P. 377-387.
- Bosc P., Pivert O. SQLf: a relational database language for fuzzy querying // IEEE Transactions on Fuzzy Systems. 1995. V. 3. P. 1 - 17.
- Штовба С.Д.Введение в теорию нечетких множеств и нечеткую логику. URL: http://matlab.exponenta.ru/fuzzylogic/book1/
- BirgerHjørland Semantic relations (meaning relations). URL: http://www.db.dk/bh/lifeboat_ko/concepts/semantic_relations.htm
- Сорочинская Н.К. Особенности организации ввода/вывода данных для системы большой размерности / Материалы Международной научно-технической конференции «Фундаментальные проблемы радиоэлектронного приборостроения». М.: Энергоатомиздат. 2009.