350 rub
Journal Science Intensive Technologies №6 for 2009 г.
Article in number:
NUMERICAL MODELS OF SPECIALIZED CHAMBERS FOR MICROWAVE IRRADIATION OF DIELECTRIC MEDIA SAMPLES
Authors:
V.V. Komarov, A.G. Savina
Abstract:
Electrodynamic characteristics of single-mode specialized complex shaped microwave chambers intended for investigation of processes of electromagnetic (EM) waves interaction with dissipative liquid media are analyzed in present paper. Such systems are utilized in microwave chemistry, material science, radiation biology and etc. Considered waveguides and resonators with capacitance gap allow increasing penetration depth of EM field in sample and are compatible with coaxial and microstrip lines. Three dimensional numerical models of two microwave chambers have been built. Computer modeling was carried out using finite element technique and finite difference time-domain method. Dependences of reflection coefficient versus temperature of three liquid samples at 2450 MHz have been studied for waveguide-resonator cell on double-ridged waveguide. EM field patterns in the interaction region and S-parameters of reentrant cavity resonator filled with chemical substance С4Н9N at 915 MHz have been determined. Computer modeling results have shown high uniformity of samples heating and power efficiency of such systems
Pages: 23-27
References
  1. Бердоносов С.С., Бердоносов Д.Г., Знаменская И.В. Микроволновое излучение в химической практике // Химическая технология. 2000. № 3. С. 2 - 8.
  2. Пробоподготовка в микроволновых печах: теория и практика / под ред. Г.М. Кингстона, Л.Б. Джесси. М.: Мир. 1991.
  3. Jow J., Hawley M.C., Finzel M. et. al. Microwave processing and diagnostics of chemically reacting materials in a single-mode cavity applicator // IEEE Transactions on Microwave Theory and Techniques. 1987. V. MTT-35. N. 12. P. 1435-1443.
  4. Kalhori S., Elander N., Svennebrink J., Stone-Elander S. A re-entrant cavity for microwave enhanced chemistry // Int. J. Microwave Power and Electromagnetic Energy. 2003. vol. 38. N. 2. P. 125 - 135.
  5. Catala-Civera J.M., Giner-Maravilla S., Sanchez-Hernandez D., de los Reyes E. Pressure aided microwave rubber vulcanization in a ridged three-zone cylindrical cavity // Int. J. Microwave Power and Electromagnetic Energy. 2000. V. 35. N. 2. P. 92 - 104.
  6. Stillesjo F., Solbrand A. Dynamic field tuning and heating studies in a microwave chemistry applicator // Proceedings of the 36th IMPI Symposium. 2001. San-Francisco. USA. P. 37 - 40.
  7. Kumar S. B., Mathew K.T., Raveendranath U., Augustine P. Dielectric properties of certain biological materials at microwave frequencies // Int. J. Microwave Power and Electromagnetic Energy. 2001. V. 36. N. 2. P. 67 - 75.
  8. Wake K., Hongo H., Watanabe S. et al. Development of a 2.45 GHz local exposure system for in vivo study on ocular effects // IEEE Transactions on Microwave Theory and Techniques. 2007. V. MTT-55. N. 3. P. 588 - 596.
  9. Farrell G., McMinn W.A., Magee T.R. Dielectric and thermal properties of pharmaceutical powders // Proceedings of the 10th Int. Conference on Microwave and High Frequency Heating. 2005. Modena. Italy. P. 223 - 226.
  10. Kayser T., Pauli M., Weisbeck W. Design of a microwave applicator for nanoparticle synthesis // Int. J. Microwave Power and Electromagnetic Energy. 2008. V. 42. N. 2. P. 21 - 30.
  11. А.с. № 1601785 (СССР). Устройство для сверхвысокочастотного нагрева / Ю.Л. Шворобей, М.М. Безлюдова, А.А. Осипов, М.Ф. Трегубенко, В.М. Абдусаламов.
  12. Kolomeytsev V.A., Komarov V.V., Yakovlev V.V. Double-ridged traveling wave applicator for efficient microwave duplicating of fabric // Proceedings of the 31st Microwave Power Symposium. 1996. Boston. USA. P.159 - 160.
  13. Birenbaum L., Kaplan I.T., Metlay W., Rosenthal S.W., Schmidt H., Zaret M.M. Effect of microwaves on the rabbit eye // Int. J. Microwave Power and Electromagnetic Energy. 1969. V. 4(4). P.232 - 243.
  14. Gibbs F.A. Clinical evaluation of a microwave/radio frequency  system (BSD Corporation) for induction of local and regional hyperthermia // Int. J. Microwave Power and Electromagnetic Energy. 1981. V. 16(2). P.185 - 192.
  15. Комаров В.В. Конечно-разностное моделирование и оптимизация СВЧ-камеры лабораторного анализа на  Н-волноводе // Физика волновых процессов и радиотехнические системы. 2005. № 4. С.36 - 44.
  16. Комаров В.В. Оптимизация S-параметров численных моделей диссипативных СВЧ-элементов сложной конфигурации // Электромагнитные волны и электронные системы. 2006. Т.11. № 2/3. С. 64 - 73.
  17. Gwarek W.K., Celuch-Marcysiak M. Wide-band S-parameter extraction from FDTD simulations for propagating and evanescent modes in inhomogeneous guides // IEEE Transactions on Microwave Theory and Techniques. 2003. V. MTT-51. N. 8.P. 1920 - 1928.
  18. Гайдук В.И., Палатов К.И., Петров Д.М. Физические основы электроники сверхвысоких частот. М.: Советскоерадио. 1971.
  19. Xi W., Tinga W. Error analysis and permittivity measurements with reentrant high-temperature dielectrometer // Int. J. Microwave Power and Electromagnetic Energy. 1993. V. 28(2). P.104 - 112.
  20. Kanai Y., Tsukamoto T., Miyakawa M., Kashiwa T. Resonant frequency analysis of reentrant cavity applicator - comparison of finite element and finite difference time domain methods // IEEE Transactions on Magnetics. 2000. V. 36. N. 4.P. 1750 - 1753.
  21. Ахадов Я.Ю. Диэлектрические свойства чистых жидкостей. М.: Изд-востандартов. 1972.