Guangbao Shan1, Yanwen Zheng2, Huihua Cao3, V.I. Goncharenko4
1-3 School of Microelectronics, Xidian University (Xi’an, China)
4 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1 gbshan@xidian.edu.cn; 4 vladimirgonch@mail.ru
Problem Statement. Multi-band reconfigurable radio frequency (RF) transceivers are widely used in brain-machine interfaces and implantable medical diagnostic devices. Their performance, dimensions and cost largely depend on the inductors. Low operating frequency, limited tuning range and large size of modern tunable inductors impose restrictions on the use of RF transceivers.
Objective. To present a method for tuning a magnetically coupled inductor.
Results. A method for tuning a magnetically coupled inductor is considered and its detailed analysis is carried out. It is shown that, compared with a fixed inductor with an area of 95×130 μm, a continuously adjustable inductance value of 0.61–3.05 nH (self-inductance is 1.03 nH) is achieved in the range from direct current (DC) to 20 GHz, and the tuning range is 80%, and the quality factor Q=68.7. The equivalent inductance value is tuned within the range from 0.56 to 2.96 of the self-inductance value without changing the circuit design and increasing the chip area.
Practical significance. The proposed method for tuning the magnetically coupled inductor can improve the broadband response and narrowband capabilities of RF transceivers.
Guangbao Shan, Yanwen Zheng, Huihua Cao, Goncharenko V.I. A wide frequency range continuously tunable inductor based on phase modulation. Radiotekhnika. 2025. V. 89. № 9. P. 175−180. DOI: https://doi.org/10.18127/j00338486-202509-19 (In Russian)
- Basir A., Yoo H. Efficient Wireless Power Transfer System with a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants. IEEE Trans. Microw. Theory Techn. 2020. V. 68. № 5. Р. 1943-1953. DOI: 10.1109/TMTT.2020.2965938.
- Liu J.S., Wang Y., Guo R., Wang Q.Y., Zheng J.F., Kurpad K., Kainz W., Chen J. A Cascaded Heterogeneous Equivalent Network for Evaluating RF-Induced Hazards on Active Implantable Medical Devices. IEEE Trans. Electromagn. Compat. 2022. V. 64. № 2. P. 286-294. DOI: 10.1109/TEMC.2021.3121203.
- Reich S., Sporer M., Haas M., Becker J., Schuttler M., Ortmanns M. A High-Voltage Compliance, 32-Channel Digitally Interfaced Neuromodulation System on Chip. IEEE J. Solid-State Circuits. 2021. V. 56. № 8. P. 2476-2487. DOI: 10.1109/JSSC.2021.3076510.
- Ler C.L., bin A'ain A.K., Kordesch A.V. Reply to Comments on “Compact, High-Q, and Low-Current Dissipation CMOS Differential Active Inductor”. IEEE Microw. Wireless Compon. Lett. 2008. V. 18. № 10. P. 683-685. DOI: 10.1109/LMWC.2008.2003465.
- Herbert T.B., Hyland J.S., Abdullah S., Wight J., Amaya R.E. An Active Bandpass Filter for LTE/WLAN Applications Using Robust Active Inductors in Gallium Nitride. IEEE Trans. Circuits Syst. II Exp. Briefs. 2021. V. 68. № 7. P. 2252-2256. DOI: 10.1109/TCSII.2021.3054739.
- Zaiden D.M., Grandfield J.E., Weller T.M., Mumcu G. Compact and Wideband MMIC Phase Shifters Using Tunable Active Inductor-Loaded All-Pass Networks. IEEE Trans. Microw. Theory Techn. 2018. V. 66. № 2. P. 1047-1057. DOI: 10.1109/TMTT.2017.2766061.
- Rabbani S., Narayana S., Singh Y.K. A Novel Concurrent Dual Band Matching Network for Complex to Real Impedance Matching for RF Applications. IEEE Trans. Circuits Syst. II Exp. Briefs. 2023. V. 70. № 1. P. 66-70. DOI: 10.1109/TCSII.2022.3208509.
- Xu L.J., Xu J.P., Chu Z.J., Liu S., Zhu X.W. Circularly Polarized Implantable Antenna with Improved Impedance Matching. IEEE Antennas Wireless Propag. Lett. 2020. V. 19. № 5. P. 876-880. DOI: 10.1109/LAWP.2020.2983216.
- Wainstein N., Kvatinsky S. TIME-Tunable Inductors Using MEmristors. IEEE Trans. Circuits Syst. I: Reg. Papers. 2018. V. 65. № 5. P. 1505-1515. DOI: 10.1109/TCSI.2017.2760625.
- Son K.Y., Kim T., Kwon K. A Dual-Band CMOS Tunable Duplexer Employing a Switchable Autotransformer for Highly Integrated RF Front Ends. IEEE Microw. Wireless Compon. Lett. 2019. V. 29, № 7. P. 495-497. DOI: 10.1109/LMWC.2019.2920512.
- Chen H.H., Wang X.J., Gao Y., Shi X.L., Wang Z.G., Sun N., Zaeimbashi M., Liang X.F., He Y.F., Dong C.Z., Wei Y.Y., Jones J.G., Page M.R., Howe B.M., Brown G.J., Sun N.X. Integrated Tunable Magnetoelectric RF Inductors. IEEE Trans. Microw. Theory Techn. 2020. V. 68. № 3. P. 951-963. DOI: 10.1109/TMTT.2019.2957472.
- Vroubel M., Yan Zhuang, Rejaei B., Burghartz J.N. Integrated Tunable Magnetic RF Inductor. IEEE Electron Device Lett. 2004. V. 25. № 12. P. 787-789. DOI: 10.1109/LED.2004.839208.
- Du S.S., Yang Q.H., Fan X.N., Wang M., Zhang H.W. A Compact and Low-Loss Tunable Bandpass Filter Using YIG/GGG Film Structures. IEEE Microw. Wireless Compon. Lett. 2017. V. 27. № 5. P. 431-433. DOI: 10.1109/LMWC.2017.2691059.

