350 rub
Journal Radioengineering №9 for 2025 г.
Article in number:
Signal detection based on sub-Nyquist sampling technology without directional and frequency search
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202509-11
UDC: 621.396.62
Authors:

A.S. Podstrigaev1, I.A. Astafyev2

1,2 JSC “Scientific-Research Institute “Vektor” (St. Petersburg, Russia)

1,2 Saint-Petersburg State Electrotechnical University “LETI” (Saint-Petersburg, Russia)

1 ap0d@ya.ru; 2 astaphev.ivan@gmail.com

Abstract:

This article analyzes the structural diagram of a typical RF spectrum management complex (RF SMC), which includes a radio technical review system (RTRS) and a phase direction finding system (PDFS). A feature of this complex is the use of different receivers in the RTRS and PDF, since these systems solve different problems, therefore, the receivers are subject to largely contradictory requirements. This feature complicates the development, manufacture, debugging and repair of the complex, and accordingly, increases the costs of its creation and operation. To solve this problem, it is proposed to use a multichannel Sub-Nyquist receiver (MSNR) both in the RTRS and PDFS, due to the possibility of software configuration of its parameters. This solution also allows to increase the unification of the RF SMC components.

Therefore, the purpose of this work is to develop modification options for the RF SMC based on the MSNR common to the RTRS and PDFS, to perform a comparative analysis of the proposed RF SMC options and to substantiate recommendations for the use of the proposed RF SMC options.

To achieve this goal, a detailed analysis of a typical RF SMC was performed. Its structural diagram, operating algorithm, operating modes, direction finding algorithm, appearance and organization of the antenna system were described. Then, 4 variants of the RF SMC modification were presented: with separate RTRS and PDFS and without directional search, with separate RTRS and PDFS and with directional search, with combined RTRS and PDFS and without directional search, with combined RTRS and PDFS and with directional search. Then, a comparative analysis of the typical and proposed 4 variants of the RF SMC modernization was performed, where the number of switches, the number of receivers, the operating algorithm, and the direction finding algorithm were compared. Also, the following indicators were used to perform a comparative analysis of the proposed RF SMC variants: unification coefficient, reduction in hardware cost, cost savings coefficient, probability of system failure, probability of missing a single signal, losses in switches, system noise factor, sensitivity.

After the comparative analysis, general recommendations were given for the use of the proposed RF SMC options. These recommendations were justified by the requirements for signal analysis, weight, size and cost constraints.

Pages: 103-112
For citation

Podstrigaev A.S., Astafyev I.A. Signal detection based on sub-Nyquist sampling technology without directional and frequency search. Radiotekhnika. 2025. V. 89. № 9. P. 103−112. DOI: https://doi.org/10.18127/j00338486-202509-11 (In Russian)

References
  1. Eremeev I.Ju., Zhilenkov M.G., Zamarin A.I., Trunov V.N. Jetapy strukturnogo analiza radiosignalov pri radiomonitoringe sistem svjazi so skachkoobraznym izmeneniem nesushhej chastoty. Voprosy radiojelektroniki. 2009. T. 1. № 2. S. 71–80 (in Russian).
  2. Lihachev V.P., Lihacheva N.V. Obosnovanie trebovanij k vzaimnomu raspolozheniju sredstv radiotehnicheskogo monitoringa i pomeh. Naukoemkie tehnologii. 2010. T. 11. № 9. S. 51–54 (in Russian).
  3. Chebotar' I.V., Laptev I.V., Pechurin V.V., Baldychev M.T., Pivkin I.G. Opredelenie koordinat istochnika impul'snyh radiosignalov na osnove raznostno-dal'nomernyh izmerenij v uslovijah primenenija odnogo vozdushnogo priemnogo punkta. Jelektromagnitnye volny i jelektronnye sistemy. 2022. T. 27. № 3. S. 48-51. DOI: 10.18127/j15604128-201908-05 (in Russian).
  4. Verba V.S., Merkulov V.I., Chernov V.S. Metody traektornogo upravlenija nabljudeniem v uglomernyh dvuhpozicionnyh sistemah radiomonitoringa vozdushnogo bazirovanija. Ch. 2. Gradientnye metody. Uspehi sovremennoj radiojelektroniki. 2021. T. 75. № 9. S. 5-26. DOI: 10.18127/j20700784-202109-01 (in Russian).
  5. Fokin G.A. Razrabotka i ocenka metodov pozicionirovanija priemoperedatchikov v sistemah kognitivnogo radio 6G. T-Comm: Telekommunikacii i transport. 2024. T. 18. № 6. S. 4-20. DOI: 10.36724/2072-8735-2024-18-6-4-20 (in Russian).
  6. Makarenko S.I., Starostin A.V. Protivovozdushnaja oborona strany ot udarov bespilotnyh letatel'nyh apparatov i krylatyh raket: novye ugrozy, problemnye voprosy, tehniko-jekonomicheskij analiz variantov arhitektury. Sistemy upravlenija, svjazi i bezopasnosti. 2024.
    № 2. S. 86-148 (in Russian).
  7. Podstrigaev А.S., Smolyakov А.V., Maslov I.V. Probability of pulse overlap as a quantitative indicator of signal environment complexity. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika 2020. № 23(5). S. 37-45. DOI: 10.32603/1993-8985-2020-23-5-37-45 (in Russian).
  8. Barhatov A.V., Verem'ev V.I., Golovkov A.A., Kutuzov V.M., Malyshev V.N., Petkau O.G., Stenjukov N.S., Shmyrin M.S. Poluaktivnaja radiolokacija v sistemah monitoringa obstanovki i ohrany vazhnyh ob#ektov. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. 2015. № 4. S. 71-77 (in Russian).
  9. Vorob'ev E.N. Issledovanie signal'nyh priznakov raspoznavanija malyh BPLA v poluaktivnoj RLS. Vestnik Novgorodskogo gos. un-ta tehnich. nauki. 2019. № 4. S. 72-77 (in Russian).
  10. Djatlov A.P., Kul'bikajan B.H. Korreljacionnaja obrabotka shirokopolosnyh signalov v avtomatizirovannyh kompleksah radiomonitoringa. M.: Gorjachaja linija – Telekom. 2017. 332 s. (in Russian).
  11. Djatlov P.A. Razrabotka i issledovanie kombinirovannogo pelengatora na osnove linejnoj fazirovannoj antennoj reshetki: Avtoref. diss. … kand. tehn. nauk. Taganrog. 1999. 134 s. (in Russian).
  12. Lukijanov A.S., Podstrigaev A.S. Ocenka povyshenija doli impul'sov, prinimaemyh kompleksom radiomonitoringa v uslovijah slozhnoj signal'noj obstanovki, pri ispol'zovanii ustrojstv zaderzhki. Uspehi sovremennoj radiojelektroniki. 2024. T. 78. № 3. S. 13–21. DOI: https://doi.org/10.18127/j20700784-202403-02 (in Russian).
  13. Lukijanov A.S., Krasuljak A.V., Ankudinova V.S. Obespechenie jeffektivnoj raboty korabel'nogo kompleksa radiomonito-ringa v slozhnoj signal'noj obstanovke na osnove vnedrenija v nego ustrojstv zaderzhki. Morskaja radiojelektronika. 2024. № 4(90). S. 22-27 (in Russian).
  14. Studenikin A.G., Tokarev A.B. Povyshenie parcial'noj doli vremeni sbora dannyh pri panoramnom radiokontrole. Radiotehnika. 2023.
    T. 87. № 8. S. 36-41. DOI: 10.18127/j00338486-202308-06 (in Russian).
  15. Dvornikov S.V., Dvornikov S.S., Pshenichnikov A.V. Apparat analiza chastotnogo resursa dlja rezhima psevdosluchajnoj perestrojki rabochej chastoty. Informacionno-upravljajushhie sistemy. 2019. № 4. S. 62–68 (in Russian).
  16. Pace P.E. Detecting and classifying low probability of intercept radar. Artech House Remote Sensing Library. 2009. № 2. 861 р.
  17. Dvornikov S.V., Konjuhovskij V.S., Simonov A.N., Popov E.A. Metod razdelenija radioizluchenij v mnogosignal'noj obstanovke. Radiotehnika. 2019. T. 83. № 12(20). S. 10–16. DOI: 10.18127/j00338486-201912(20)-02 (in Russian).
  18. Korotkov V.F., Zyrjanov R.S. Razdelenie impul'snyh posledovatel'nostej v smeshannom potoke signalov. Izvestija vysshih uchebnyh zavedenij Rossii. Radiojelektronika. 2017. № 3. S. 5-10 (in Russian).
  19. Shevchenko M.E., Malyshev V.N., Sokolov S.S. i dr. Ustranenie neodnoznachnosti ocenok napravlenij prihoda shirokopo-losnyh signalov v mnogosignal'nom rezhime pelengovanija. Doklady Akademii nauk vysshej shkoly Rossijskoj Federacii. 2024. № 4(65). S. 64-73. DOI: 10.17212/1727-2769-2024-4-64-73 (in Russian).
  20. Podstrigaev A.S., Smoljakov A.V., Lihachev V.P. Programmno-opredeljaemye sredstva shirokopolosnogo analiza signalov na osnove tehnologii subdiskretizacii. SPb: Izd-vo SPbGJeTU «LJeTI». 2021. 184 s. (in Russian).
  21. Kulebjakin S.D., Tjurnin A.M. Realizacija fazovogo metoda pelengovanija na PLIS. Nauchnye, inzhenernye i proizvod-stvennye problemy sozdanija tehnicheskih sredstv monitoringa jelektromagnitnogo polja s ispol'zovaniem innovacionnyh tehnologij. SPb. 2024.
    S. 99-109 (in Russian).
  22. Podstrigaev A.S. Metodika proektirovanija sverhshirokopolosnogo cifrovogo priemnika s subdiskretizaciej. T-Comm: Telekommunikacii i transport. 2021. T. 15. № 10. S. 11–17 (in Russian).
  23. Pazushkina O.V. Osnovy metrologii, standartizacii, sertifikacii i kontrolja kachestva: Ucheb. posobie. Ul'janovsk: UlGTU. 2015. 148 s. (in Russian).
Date of receipt: 28.07.2025
Approved after review: 05.08.2025
Accepted for publication: 30.08.2025