350 rub
Journal Radioengineering №9 for 2025 г.
Article in number:
Software-defined rejection of interfering signals in a Sub‐Nyquist multichannel receiver
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202509-05
UDC: 621.396.62
Authors:

A.S. Podstrigaev1, D.A. Kalinin2

1,2 JSC “Scientific-Research Institute “Vektor” (St. Petersburg, Russia)

1 ap0d@ya.ru; 2 dimk.a.a@inbox.ru

Abstract:

The increase in the number of radio electronic devices leads to the intensive development of RF spectrum management equipment, the functions of which include radio spectrum overview in a wide frequency range, signal detection and evaluation of its parameters.

Analysis of signals in a wide instantaneous frequency band (from a few gigahertz up to tens of gigahertz) increases the probability of signal detection and recognition, as well as the speed of taking response actions. However, there are no effective mechanisms for flexible rejection of powerful interfering signals, which, due to the exclusion of frequency scanning, inevitably fall into a wide frequency band. A Sub‐Nyquist multichannel receiver allows for software-defined rejection of the required frequencies. However, there is no scientific and method for configuring receiver parameters to solve this problem.

The purpose of this work is to develop a method for configuring receiver parameters when rejecting an interfering signal and to evaluate the effectiveness of this approach.

As a result of the conducted research, expressions are obtained for configuring receiver parameters when rejecting an interfering signal. Recommendations for choosing receiver parameters are substantiated. The applicability limits of the software rejection method are presented.

One can observe that with a simultaneous increase in the rejection bandwidth and an insignificant frequency shift of the channel frequency response dips relative to each other, their repetition period in the operating frequency range is eliminated.

It is shown that when suppressing an interference signal with a frequency band of 80 MHz by 35 dB using this method, the probability of missing a useful signal does not exceed 2.5%.

The developed method for configuring receiver parameters can be used at the design stage of RF spectrum management equipment to assess the feasibility and effectiveness of applying technical solutions that reduce the power of an interference signal.

Further author’s research is aimed at optimizing the calculation of sampling frequencies; studying the probabilities of suppressing various signal types when using the software rejection method; studying the possibility of rejecting several signals using this method; analyzing the possibility of flexible adjustment of sampling frequencies to ensure interference rejection in a changing signal-interference environment.

Pages: 54-62
For citation

Podstrigaev A.S., Kalinin D.A. Software-defined rejection of interfering signals in a Sub‐Nyquist multichannel receiver. Radiotekhnika. 2025. V. 89. № 9. P. 54−62. DOI: https://doi.org/10.18127/j00338486-202509-05 (In Russian)

References
  1. Podstrigaev A.S., Smoljakov A.V., Lihachjov V.P. Programmno-opredeljaemye sredstva shirokopolosnogo analiza signalov na osnove tehnologii subdiskretizacii. SPb: Izd-vo SPbGJeTU «LJeTI». 2021. 184 s. (in Russian).
  2. Perunov Ju.M., Macukevich V.V., Vasil'ev A.A. Zarubezhnye radiojelektronnye sredstva. V 4-h knigah. Kn. 2. Sistemy radiojelektronnoj bor'by. M.: Radiotehnika. 2010 (in Russian).
  3. Tsui J.B.Y. Microwave receivers with electronic warfare applications. New York: SciTech Publishing Inc. 2005.
  4. Tsui J.B.Y. Special Design Topics in Digital Wideband Receivers. Norwood: Artech House. 2010.
  5. Tsui J.B.Y., Schamus J.J., Kaneshiro D.H. Monobit receiver. Proceedings of the IEEE MTT-S International Microwave Sym-posium. 1997. № 2. P. 469–471.
  6. Patent №2762375 (RF). Ustrojstvo avtomaticheskoj zashhity impul'sno-doplerovskih radiolokacionnyh stancij ot pas-sivnyh pomeh i sposob ego osushhestvlenija. Savchuk D.V., Kuznecov V.V., Shaposhnikov A.S., Volodin I.N. Opubl. 20.12.2021. Bjul. № 35.
  7. Li Xiao, Xiang-Gen Xia. Frequency determination from truly sub-Nyquist samplers based on robust Chinese remainder theorem. Signal Processing. 2018. V. 150. Р. 248–258.
  8. Sobhani G., Pezeshk A.M., Behnia F., Sadeghi M. Joint detection of carrier frequency and direction of arrival of wide-band signals using sub-nyquist sampling and interferometric direction finding. AEU - International Journal of Electronics and Communications. Sep. 2021. V. 139. Р. 153926.
  9. Podstrigaev A.S. Ocenka urovnja slozhnosti signal'noj obstanovki dlja ispol'zovanija mnogokanal'nogo priemnika s subdiskretizaciej. Trudy MAI. 2023. № 129. DOI: 10.34759/trd-2023-129-18 (in Russian).
  10. Lajons R. Cifrovaja obrabotka signalov. Izd. 2-e. Per. s angl. M.: OOO «Binom-Press». 2006. 656 s. (in Russian).
  11. Podstrigaev A.S. Klassifikacija neodnoznachnosti opredelenija chastoty v cifrovom priemnike s subdiskretizaciej. Radiotehnika i jelektronika. 2022. T. 67. № 4. S. 369–376. DOI: 10.31857/S0033849422040131 (in Russian).
  12. Podstrigaev A.S. Klassifikacija anomal'nyh oshibok izmerenija chastotno-vremennyh parametrov v shirokopolosnyh priemnikah i sposoby ih ustranenija. Zhurnal Sibirskogo federal'nogo universiteta. Tehnika i tehnologii. 2022. № 15(2). S. 223–237 (in Russian).
  13. Podstrigaev A.S., Smoljakov A.V. Issledovanie tochnosti opredelenija chastotno-vremennyh parametrov impul'sa v cifrovom priemnike s subdiskretizaciej pri mnogosignal'nom vozdejstvii. Trudy MAI. 2022. № 123. DOI: 10.34759/trd-2022-123-21 (in Russian).
  14. Borisov V.I. i dr. Pomehozashhishhennost' sistem radiosvjazi s rasshireniem spektra signalov metodom psevdosluchajnoj perestrojki rabochej chastoty. M.: Radio i svjaz'. 2000. 384 s. (in Russian).
Date of receipt: 28.07.2025
Approved after review: 05.08.2025
Accepted for publication: 30.08.2025