350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
Analysis of the influence of the resolution of the inverse synthesis aperture radar on the accuracy of polarization selection of objects based on the principal component method
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-16
UDC: 621.396
Authors:

V.B. Suchkov1, G.L. Pavlov2, A.Yu. Perov3

1-3 Bauman Moscow State Technical University (Moscow, Russia)

1 pavlov_503@bmstu.ru; 2 vbs-2014@bmstu.ru; 3 perovau@bmstu.ru

Abstract:

Statement of the problem. One of the most important characteristics of synthetic aperture radar (SAR) systems is the resolution, which determines the level of detail of the acquired images and, consequently, the accuracy of subsequent classification of objects. In the conditions of increasing requirements to automatic processing of radar data, methods of dimensionality reduction and extraction of informative features, such as the principal component analysis (PCA) method, become particularly relevant. Taking into account the dependence of SAR efficiency on the resolution of radar images and the accuracy of target modelling, it is required to estimate the dependence of object classification accuracy on the resolution of PCA.

Purpose. Investigation of the effect of aperture inversion synthesis radar resolution on object classification accuracy using the principal component method.

Results. A multipoint model for a radar with synthesized aperture in Ka-band wavelengths (8 mm) was created, which allowed to simplify computational processes while maintaining high detailed images. The parameters of the probing LFM signal and angular intervals of the synthesized aperture were calculated taking into consideration the resolution requirements. An algorithm for processing reflected signals has been implemented in MATLAB, which allowed to construct polarization signatures of locatable objects. Polarization radar images of objects from different viewing angles were obtained by varying aperture synthesis parameters. The research confirmed the applicability of the proposed algorithm for the formation of training samples considering polarization characteristics. The influence of spatial resolution on the accuracy of binary classification by the method of principal components was evaluated. Research assesses the impact of spatial resolution on the accuracy of binary classification by means of the method of principal components.

Practical significance. The limitations of application of the method of principal components in conditions of low resolution of radar systems with synthetic aperture are established.

Pages: 135-148
For citation

Suchkov V.B., Pavlov G.L., Perov A.Yu. Analysis of the influence of the resolution of the inverse synthesis aperture radar on the accuracy of polarization selection of objects based on the principal component method. Radiotekhnika. 2025. V. 89. № 9. P. 135−148. DOI: https://doi.org/10.18127/j00338486-202508-16 (In Russian)

References
  1. Graosque Jones, Guasselli Laurindo. Principal component analysis of C-SAR images for flood mapping. Santa Fé province. Argentina. Territorium. 2020. V. 27. № II. Р. 41-48.
  2. Kumar A., Giusti E., Martorella M. Hybrid polarimetry inverse synthetic aperture radar. IET Radar, Sonar & Navigation. 2025.
    V. 19. № 1. Р. e70004.
  3. Wang X., Dai Y., Song S., Jin T., Huang X. Deep Learning-Based Enhanced ISAR-RID Imaging Method. Remote Sensing. 2023. V. 15. № 21. Р. 5166.
  4. Mestre-Quereda A., Lopez-Sanchez J.M. Evaluation of a polarimetric contrast enhancement technique as preprocessing step for vessel detection in SAR images: comparison of frequency bands and polarimetric modes. Applied Sciences. 2025. V. 15. № 7. Р. 3633.
  5. Zhang T., Marino A., Xiong H., Yu W. A ship detector applying principal component analysis to the polarimetric notch filter. Remote Sensing. 2018. V. 10. № 6. Р. 948.
  6. Akinshin R.N., Homjakov A.V., Rumjancev V.L., Kurbatskij S.A. Ocenka jeffektivnosti algoritmov poljarizacionnoj selekcii nepodvizhnyh nazemnyh ob’ektov. Zhurnal radiojelektroniki. 2013. № 4. URL: http://jre.cplire.ru/koi/apr13/10/text.html (in Russian).
  7. Akinshin R.N., Peteshov A.V., Rumjancev V.L., Sigitov V.V. Analiz jeffektivnosti selekcii radiolokacionnyh ob’ektov po poljarizacionnomu, dal'nomernomu i doplerovskomu portretam. Jelektronnye informacionnye sistemy. 2018. № 2. S. 5–12 (in Russian).
  8. Akinshin R.N., Ushakov V.A., Lihoedenko K.P. Poljarimetricheskie ustrojstva formirovanija i obrabotki signala dlja selekcii radiolokacionnyh ob’ektov. Zhurnal radiojelektroniki. 2023. № 10. S. 5–13 (in Russian).
  9. Nicak D.A. Primenenie raznostnoj obrabotki signalov poljarimetricheskogo RSA dlja vydelenija slabokontrastnyh raspredelennyh ob#ektov. Ural Radio Engineering Journal. 2019. T. 3. № 1 (in Russian).
  10. Pavlov G.L., Suchkov V.B., Perov A.Ju. Algoritm poljarizacionnoj selekcii ob’ektov v radiolokatore s inversnym sintezirovaniem apertury na osnove metoda glavnyh komponent. Sb. trudov XXX Mezhdunar. nauch.-tehn. konf. «Radiolokacija, navigacija, svjaz'» (g. Voronezh, 16–18 apr. 2024 g.). V 5-ti tomah. Voronezh: Izd. dom VGU. 2024. S. 29–38 (in Russian).
  11. Borzov A.B., Labunec L.V., Lihoedenko K.P. i dr. Poljarizacionnaja selekcija radiolokacionnyh celej s ispol'zovaniem metoda glavnyh komponent. SVCh-tehnika i telekommunikacionnye tehnologii. 2020. № 1-1 (in Russian).
  12. Borzov A.B., Labunets L.V., Pavlov G.L. et al. Recognition of anthropogenic 3D objects on an underlying surface by intelligent analysis of a polarization scattering matrix. Journal of Communications Technology and Electronics. 2020. V. 65. № 7. P. 815-825.
  13. Suchkov V.B. Metodika sozdanija mnogotochechnoj modeli ajerodinamicheskoj celi dlja opredelenija vhodnyh signalov bortovyh radiolokacionnyh datchikov. Jelektromagnitnye volny i jelektronnye sistemy. 2013. T. 18. №. 6. S. 45-53.
  14. Borzov A.B., Dodenko I.A., Karakulin Y.V. et al. Mathematical simulation of input signals of onboard synthetic aperture radars from complex targets and clutters. AIP Conference Proceedings. Moscow. 2022. P. 020016.
  15. Borzov A.B., Suchkov V.B., Shakhtarin В.I., Sidorkina Y.A. Mathematical modeling and simulation of the input signals of short-range radar systems. Journal of Communications Technology and Electronics. 2014. V. 59. № 12. P. 1356-1368.
  16. Lihoedenko K.P., Seregin G.M., Suchkov V.B., Perov A.Ju. Matematicheskoe modelirovanie poljarizacionnyh radiolokacionnyh portretov ob’ektov slozhnoj formy na osnove ih mnogotochechnyh modelej v radiolokatorah s inversnym sintezirovaniem apertury. Uspehi sovremennoj radiojelektroniki. 2024. T. 78. № 2. S. 13-24 (in Russian).
  17. Ozdemir C. Inverse synthetic aperture radar imaging with MATLAB algorithms. John Wiley & Sons. 2012. V. 416.
Date of receipt: 27.01.2025
Approved after review: 09.06.2025
Accepted for publication: 29.07.2025