V.I. Afanaseva1, A.R. Bestugin2, I.A. Kirshina3
1-3 St. Petersburg State University of Aerospace Instrument Engineering (St. Petersburg, Russia)
1 victoria_afanaseva@mail.ru; 2 fresguap@mail.ru; 3 ikirshina@mail.ru
Problem statement. Changes in the dynamics of the coastal zone under the influence of natural and anthropogenic processes remain one of the least formalized problems in the control systems of aquatic systems. The episodic nature of observations, the limited availability of coastal slopes and the heterogeneity of vegetation cover prevent the use of traditional means of assessing erosion activity. In modern conditions, it is necessary to move from empirical descriptions to algorithmic analysis methods capable of objectively detecting signs of terrain instability at an early stage.
Objective. Formation of an automated method for searching for erosion risk zones based on the analysis of morphometric characteristics obtained from airborne laser scanning data, with an emphasis on reproducibility, scalability and independence from external factors.
Results. A method for quantifying coastal erosion susceptibility has been developed that implements sequential processing of a digital relief model: from filtering and interpolation to calculating normalized gradients and curvatures. An integral index has been introduced that takes into account the geometric and structural parameters of the slope. The algorithm was tested on typical fragments of the coastline and revealed a significant correlation between the calculated index and the actual destruction zones.
Practical significance. The method provides an objective identification of erosion-hazardous areas without operator involvement and without the need for ground measurements. This makes it possible to use it in operational surveys, in engineering risk assessment tasks, as well as in regular monitoring of the dynamics of the shores of lake, river and reservoir systems. The obtained index models are compatible with geographic information systems and can serve as a basis for predictive scenarios of coastline development.
Afanaseva V.I., Bestugin A.R., Kirshina I.A. A method for quantifying the erosion susceptibility of coastal slopes of natural ecosystems based on the analysis of a digital relief model based on aerial laser scanning data. Radiotekhnika. 2025. V. 89. № 8. P. 67−74. DOI: https://doi.org/10.18127/j00338486-202508-09 (In Russian)
- Nenashev S.A., Bestugin A.R., Chembarisova R.I., Kirshina I.A., Nenashev V.A. Kontrol' tolshhiny l'da na osnove primenenija sverhshirokopolosnyh signal'no-kodovyh konstrukcij. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2024. T. 22. № 6.
S. 13-22. DOI: 10.18127/j20700814-202406-02 (in Russian). - Nenashev V.A., Afanas'eva V.I., Zalishhuk A.A. i dr. Formirovanie trehmernyh modelej mestnosti na osnove lidarnoj s’emki dlja vyjavlenija strukturnyh izmenenij zemnoj poverhnosti. Trudy MAI. 2023. № 131. DOI: 10.34759/trd-2023-131-15 (in Russian).
- Demidov V. Je. Primenenie vozdushnogo lazernogo skanirovanija dlja kartirovanija rel'efa, poiska sledov antropogennogo vozdejstvija i izuchenija rastitel'nogo pokrova na territorii Prioksko-Terrasnogo gosudarstvennogo prirodnogo biosfernogo zapovednika. Trudy Mordovskogo gos. prirodnogo zapovednika im. P.G. Smidovicha. 2021. T. 28. S. 74–82 (in Russian).
- Caj S.S. Ispol'zovanie materialov lidarnoj s'emki uchastkov lesnogo fonda, poluchennyh s bespilotnyh letatel'nyh apparatov, dlja opredelenija uglov naklona mestnosti. Trudy BGTU. Ser. 1. Lesnoe hozjajstvo, prirodopol'zovanie i pererabotka vozobnovljaemyh resursov. 2024. № 2(282). S. 30–37. DOI: 10.52065/2519-402X-2024-282-4 (in Russian).
- Ashatkin I.A., Mal'cev K.A., Gajnutdinova G.F., Usmanov B.M., Gafurov A.M., Ganieva A.F., Mal'ceva T.S., Gizzatullina Je.R. Morfometricheskij analiz rel'efa po global'nym modeljam vysot v juzhnoj chasti Evropejskoj territorii Rossii. Uchenye zapiski
Kazanskogo universiteta. Ser. Estestvennye nauki. 2020. T. 162. № 4. S. 612–628. DOI: 10.26907/2542-064X.2020.4.612-628 (in
Russian). - Shekar P.R., Mathew A. Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment. 2024. V. 6. P. 13–25. DOI: 10.1016/j.wsee.2023.12.001.
- Barbosa N., Andreani L., Gloaguen R., Ratschbacher L. Window-based morphometric indices as predictive variables for landslide susceptibility models. Remote Sensing. 2021. V. 13. № 3. P. 451. DOI: 10.3390/rs13030451.
- Acebes P., Lillo P., Jaime-González C. Disentangling LiDAR contribution in modelling species–habitat structure relationships in terrestrial ecosystems worldwide: a systematic review and future directions. Remote Sensing. 2021. V. 13. № 17. P. 3447. DOI: 10.3390/rs13173447.
- Mohebzadeh H., Biswas A., Rudra R., Daggupati P. Machine learning techniques for gully erosion susceptibility mapping: a review. Geosciences. 2022. V. 12. № 12. P. 429. DOI: 10.3390/geosciences12120429.
- Christofi D., Mettas C., Evagorou E., Stylianou N. et al. A Review of open remote sensing data with GIS, AI, and UAV support for shoreline detection and coastal erosion monitoring. Applied Sciences. 2025. V. 15. № 9. P. 4771. DOI: 10.3390/app15094771.

