350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
Spectral data processing methods for aviation oil condition monitoring
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-08
UDC: 543.42:621.436
Authors:

K.V. Serdiuk1

1 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 kserdiuk@mail.ru

Abstract:

Problem statement. The paper considers the urgent problem of improving the reliability of aircraft engines through the development of an approach to spectral analysis of used oils. In contrast to traditional methods, which require complex sample preparation and do not allow carrying out rapid measurements, the proposed approach is based on digital processing of spectral data. Particular attention is paid to the development of a comprehensive technique including adaptive noise filtering, background component correction and normalisation of the obtained data.

Modern aircraft engines are complex technical systems, the reliability of which directly depends on the condition of friction units. One of the key methods of their technical condition assessment is spectral analysis of aviation oils for the presence of metal-containing particles. Low signal-to-noise ratio due to complex oil composition, overlapping of spectral lines of different chemical elements and lack of standardised methods of results interpretation significantly reduce the accuracy of measurements. These problems require the creation of specialised data processing algorithms capable of ensuring the reliability and reproducibility of the analysis.

Objective. The aim of the work was to develop an automated system for analysing spectral data for diagnostics of aircraft engine condition based on the composition of exhaust oils. An important component of the study was the development of spectra normalisation techniques, including the use of reference peaks and principal component methods, to ensure reproducibility of results under conditions of changing measurement parameters.

Results. In the course of this research, a comprehensive approach to spectral data analysis has been developed, including an optimised algorithm for spectra preprocessing and an automated system for element identification.

Practical significance. The developed methodology is essential for the aviation industry, making it possible to implement operational monitoring of engine condition, to switch from routine maintenance to a predictive model based on real wear of friction units, as well as to reduce operating costs by optimising service intervals and preventing catastrophic failures.

Pages: 60-66
For citation

Serdiuk K.V. Spectral data processing methods for aviation oil condition monitoring. Radiotekhnika. 2025. V. 89. № 8.
P. 60−66. DOI: https://doi.org/10.18127/j00338486-202508-08 (In Russian)

References
  1. Zajdel' A.N., Ostrovskaja G.V., Ostrovskij Ju.I. Tehnika i praktika spektroskopii. M.: Nauka; GIFML. 1972. 375 s. (in Russian).
  2. Rodzevich A.P., Gazenaur E.G. R60 Metody analiza i kontrolja veshhestv: Ucheb. posobie. Tomsk: Izd-vo Tomskogo politehnicheskogo un-ta. 2013. 312 s. (in Russian).
  3. Moskalec O.D., Serdjuk K.V. Kompleksnye spektry v prizmennom opticheskom spektral'nom pribore. Wave Electronics and its Applications in the Information and Telecommunication Systems. Scientific papers (Saint-Petersburg, 26–30 June 2017). Eds A. Bestugin, S. Kulakov; Chairman: A. Yakimov. Saint-Petersburg: St. Petersburg State University of Aerospace Instrumentation. 2017.
  4. Serdjuk K.V. Spektral'nyj kontrol' tehnicheskogo sostojanija aviacionnogo dvigatelja. Radiotehnicheskie, opticheskie i biotehnicheskie sistemy. Ustrojstva i metody obrabotki informacii. SPb: GUAP. 2024. S. 149-151. DOI: 10.31799/978-5-8088-1917-7-2024-5-149-151.
  5. Moiseev A.A. Medianno-rekursivnaja fil'tracija. I-methods. 2017. T. 09. №. 2. S. 15–22 (in Russian).
  6. Romanova T.N., Plaksina M.V. Primenenie vejvlet-preobrazovanija dlja analiza spektrogramm, poluchennyh na Ozhe-spektrometre. Mashinostroenie i komp'juternye tehnologii. 2012. № 4. URL: https://cyberleninka.ru/article/n/primenenie-veyvlet-preobrazovaniya-dlya-analiza-spektrogramm-poluchennyh-na-ozhe-spektrometre (in Russian).
  7. Mamedov N.Ja., Abdullaev N.T., Agaeva G.S. Chislennyj algoritm spektral'nogo analiza izmeritel'nyh signalov. Priborostroenie. 2014. №7. URL: https://cyberleninka.ru/article/n/chislennyy-algoritm-spektralnogo-analiza-izmeritelnyh-signalov.
  8. Serdjuk K.V. Ispol'zovanie metoda mashinnogo obuchenija pri analize spektroskopicheskih dannyh. Volnovaja jelektronika i infokommunikacionnye sistemy: Materialy XXVII Mezhdunar.j nauch.j konf. SPb: GUAP. 2024. S. 235-238 (in Russian).
  9. Serdjuk K.V. Integrirovannaja sistema kontrolja tehnicheskogo sostojanija aviacionnogo dvigatelja na baze spektroskopicheskih izmerenij. Innovacionnoe priborostroenie. 2024. T. 3. № 1. S. 36-41. DOI: 10.31799/2949-0693-2024-1-36-41 (in Russian).
  10. Osipova T.V., Baranov A.M., Ivanov I.I. Metod glavnyh komponent kak al'ternativnyj algoritm obrabotki dannyh termokataliticheskih sensorov. NP. 2022. №1. URL: https://cyberleninka.ru/article/n/metod-glavnyh-komponent-kak-alternativnyy-algoritm-obrabotki-dannyh-termokataliticheskih-sensorov (in Russian).
Date of receipt: 28.05.2025
Approved after review: 10.06.2025
Accepted for publication: 22.07.2025