350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
Calculation of the average value of mutual information in the Rayleigh channel
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-05
UDC: 621.391
Authors:

S.V. Dvornikov1, A.R. Bestugin2, S.S. Dvornikov3, I.A. Kirshina4

1-4 St. Petersburg State University of Aerospace Instrument Engineering (St. Petersburg, Russia)

1,3 Marshal of the Soviet Union S.M. Budyonny Military Academy of Communications (St. Petersburg, Russia)

1 practicdsv@yandex.ru; 2 fresguap@mail.ru; 3 dvornic92@mail.ru; 4 ikirshina@mail.ru

Abstract:

In the subarctic regions, decameter radio lines are actively used to transmit information on weather conditions. As a rule, information is transmitted by means of frequency telegraphy with speeds of about 50 Baud, using powerful radio transmitting devices. In addition, telegraphic communication is used in aviation and in the navy, so, despite the fact that decameter radio communication is a backup type of communication, the load of this range is quite high. As a result, collisions are often observed due to the variability of the ionosphere, when the receiver's input receives signals simultaneously from two sources of information.

This situation can be considered from the perspective of the operation of the radio line in the conditions of interference unintentional nature.

Given that unintentional interference, in most cases, is a signal similar in structure to the useful signal, its destructive nature will be manifested in the imposition of information embedded in it.

Taking into account these circumstances, it is required to estimate the level of mutual information values arising in the receiving channel with Rayleigh distribution from two sources of signals with close structure, one of which is an unintentional interference.

An expression for calculating the total average mutual information for two signals with close structure, one of which is an unintentional interference in the Rayleigh channel is obtained.

In accordance with the obtained expression, the average value of mutual information in the Rayleigh channel is determined not only by the variance of the useful signal and unintentional interference, but also by their average values.

The results of the theoretical study and analytical modeling showed that in the conditions of mutual interference with a close frequency-time structure in the Rayleigh channel the most difficult situation occurs when the average values of the useful signal and unintentional interference are equal.

This is explained by the fact that in conditions of deep fading, characteristic of the Rayleigh channel, the ratio of dispersions of the useful signal and interference become not so significant.

Since the operation of telegraph radio lines is characterized by aperiodicity, and the used antenna systems have extraordinarily wide radiation patterns, it is rather difficult to solve the problem of minimizing the destructive impact of unintentional interference only through organizational measures. Therefore, compensation of mutual interference is required in accordance with the obtained expression.

Pages: 39-45
For citation

Dvornikov S.V., Bestugin A.R., Dvornikov S.S., Kirshina I.A. Calculation of the average value of mutual information in the Rayleigh channel. Radiotekhnika. 2025. V. 89. № 8. P. 39−45. DOI: https://doi.org/10.18127/j00338486-202508-05 (In Russian)

References
  1. Semerkov N.N. Raschet parametrov odnoskachkovoj linii svjazi dekametrovogo diapazona v Arktike v uslovijah ano-mal'nyh vozmushhenij ionosfery. Jelektrosvjaz'. 2023. № 7. S. 3340. DOI: 10.34832/ELSV.2023.44.7.005 (in Russian).
  2. Bryksenkov A.A. Razvitie sistem svjazi v Arktike. Jelektrosvjaz'. 2017. № 11. S. 81-82 (in Russian).
  3. Lamkova N.S. Vlijanie ionosfery na KV-svjaz' v Arktike. Molodezh'. Nauka. Tvorchestvo: Materialy XIX Vseross. nauchno-praktich. konf. (g. Omsk, 09–11 nojabrja 2021 g.). Pod red. E.B. Judina. Omsk: Omskij gos. tehnich. un-t. 2021. S. 149-153 (in Russian).
  4. Dvornikov S.V., Ovchinnikov G.R., Balykov A.A. Programmnyj simuljator ionosfernogo radiokanala dekametrovogo diapozona. Informacija i kosmos. 2019. № 3. S. 6-12 (in Russian).
  5. Zhiljakov E.V. Upravlenie set'ju telegrafnoj svjazi. Avtomatika, svjaz', informatika. 2013. № 8. S. 25-27 (in Russian).
  6. Kazakovcev I.A., Chhan I.V., Tel'manov A.A., Krejder D.V. Azbuka Morze. Istorija i primenenie v aviacii. Internauka. 2022. № 44-5(267). S. 17-18 (in Russian).
  7. Nikolashin Ju.L., Miroshnikov V.I. Sozdanie podsistemy svjazi i obmena dannymi komandnoj sistemy upravlenija si-lami i sredstvami Voenno-morskogo flota. Tehnika sredstv svjazi. 2019. № 4(148). S. 2-10 (in Russian).
  8. Sergeev A.A. Sovmestnyj analiz adresnyh potokov i prognoz ih kollizij v radiolinii mnogoadresnoj svjazi. Pri-kladnaja jelektrodinamika, fotonika i zhivye sistemy - 2019: Materialy konferencii (g. Kazan', 18–20 aprelja 2019 g.). Kazan': IP Sagieva A.R., 2019. S. 205-208 (in Russian).
  9. Dvornikov S.V., Krjachko A.F., Pshenichnikov A.V. Modelirovanie radiotehnicheskih sistem v konfliktnyh situacijah kognitivnogo haraktera. Volnovaja jelektronika i infokommunikacionnye sistemy: Sb. statej XXII Mezhdunar. nauch. konf. (Sankt-Peterburg, 03–07 ijunja 2019 g.). V 2-h chastjah. Ch. 2. SPb: Sankt-Peterburgskij gos. un-t ajerokosmichesko-go priborostroenija. 2019. S. 84-89 (in Russian).
  10. Dvornikov S.V., Manaenko S.S., Dvornikov S.S. Parametricheskaja mimikrija signalov, modulirovannyh kolebanijami i sformirovannyh v razlichnyh funkcional'nyh bazisah. Informacionnye tehnologii. 2015. T. 21. № 4. S. 259-263 (in Russian).
  11. Parshutkin A.V., Svjatkin S.A., Buchinskij D.I. Ocenka vlijanija neprednamerennyh nestacionarnyh pomeh na funkci-oni-rovanie sistemy sputnikovoj svjazi s chastotnovremennym razdeleniem kanalov. Voprosy radiojelektroniki. 2020. № 7-8. S. 28-33. DOI 10.21778/2218-5453-2020-7-8-28-33 (in Russian).
  12. Dvornikov S.V., Markov E.V., Manoshi Je.A. Povyshenie pomehozashhishhennosti peredach dekametrovyh radiokanalov v uslovijah neprednamerennyh pomeh. T-Comm: Telekommunikacii i transport. 2021. T. 15. № 6. S. 4-9. DOI: 10.36724/2072-8735-2021-15-6-4-9 (in Russian).
  13. Kostin A.A., Evdokimov N.O., Marshalov T.A. Markovskaja model' radiokanala sistemy sbora i obrabotki informacii v uslovijah vozdejstvija neprednamerennyh pomeh i radiojelektronnogo protivodejstvija. Radiotehnika. 2010. № 2. S. 68-71 (in Russian).
  14. Shestakov V.V., Manonina I.V. Model' istochnika oshibok dlja radiotraktov v uslovijah releevskih zamiranij. I-methods. 2023. T. 15.
    № 1 (in Russian).
  15. Tihonov V.I. Statisticheskaja radiotehnika. Izd. 2-e, pererab. i dop. M.: Radio i svjaz'. 1962. 624 s. (in Russian).
  16. Batenkov K.A. Potencial'nye granicy vzaimnoj informacii diskretnogo kanala svjazi, uchityvajushhie statisticheskie svojstva nepre-ryvnogo kanala. Mnogojadernye processory, parallel'noe programmirovanie, PLIS, sistemy obra-botki signalov. 2014. T. 1. № 4.
    S. 96-105 (in Russian).
  17. Sinjuk A.D., Ostroumov O.A. Joint information research// Information and Space.  2017. № 3. S. 55-58 (in Russian).
  18. Jaglom A.M., Jaglom I.M. Verojatnost' i informacija. M.: Nauka. 1973. 512 s. (in Russian).
  19. Bestugin A.R., Dvornikov S.V., Dvornikov S.S., Kirshina I.A., Selivanov S.V. Pomehozashhishhennost' abonentskih ter-minalov malyh sputnikovyh stancij v rezhime telefonii. Radiotehnika. 2024. T. 88. № 4. S. 142-148. DOI: https://doi.org/10.18127/j00338486-202404-14 (in Russian).
  20. Kirjushkin V.V., Babusenko S.I., Zhuravlev A.V. Issledovanie pomehoustojchivosti strukturno-vremennogo kompensa-tora signalopodobnyh pomeh dlja navigacionnoj apparatury potrebitelej global'noj navigacionnoj sputnikovoj sistemy. Radiotehnika. 2022. T. 86. № 7. S. 84-92. DOI: 10.18127/j00338486-202207-14 (in Russian).
  21. Dvornikov S.V., Dvornikov S.S., Ivanov R.V. i dr. Zashhita ot strukturnyh pomeh radiokanalov s chastotnoj manipulja-ciej. Informacionnye tehnologii. 2017. T. 23. № 3. S. 193-198 (in Russian).
  22. Oroshhuk I.M., Klokov V.V. Pomehoustojchivost' dekametrovogo kanala svjazi s prostranstvennoj kompensaciej pomeh. Morskie intellektual'nye tehnologii. 2021. № 4-3(54). S. 109-114. DOI: 10.37220/MIT.2021.54.4.096 (in Russian).
Date of receipt: 28.05.2025
Approved after review: 10.06.2025
Accepted for publication: 22.07.2025