350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
Method of refining the search area in extreme navigation algorithms
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-04
UDC: 681.2.001.5
Authors:

E.P. Vinogradova1

1 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 kate_v@rambler.ru

Abstract:

Problem statement.  Search algorithms using information contained in digital relief matrices make it possible to implement autonomous navigation of aircraft in conditions of ever-increasing air traffic intensity. However, for such algorithms to operate successfully in real time, it is necessary to solve the problem of predicting the trajectory of an aircraft and assessing its movement parameters. The absence of such information makes search methods practically inapplicable. Such information for large aircraft can be obtained from an inertial navigation system. However, for small aircrafts the placement of such systems in most cases is not structurally provided. Therefore, it is necessary to propose alternative methods for predicting the location of an aircraft.

Objective. To expand the scope of applicability of search extreme navigation algorithms for determining the location of an aircraft in order to ensure autonomous navigation.

Results. The using of search extreme navigation algorithms based on digital terrain matrices to specify the location of aircraft allows us to successfully solve the problem of autonomous navigation in conditions of loss or distortion of signals from global navigation satellite systems. In turn, ensuring the operability of such algorithms significantly depends on the correct definition of the search zone. The paper shows the interaction of algorithms for predicting the trajectory and estimating the parameters of aircraft movement and extreme search algorithms for its current location. Bicubic extrapolation is used as a forecasting method. Modeling toolkit - Python programming language.

Practical significance. The solution to the problem of predicting the trajectory of an aircraft and estimating its movement parameters allows us to significantly limit the search area, thereby reducing the risk of ambiguous determination of the aircraft's location and extending the scope of applicability of search extreme navigation algorithms to the case of autonomous navigation of aircrafts.

Pages: 33-38
For citation

Vinogradova E.P. Method of refining the search area in extreme navigation algorithms. Radiotekhnika. 2025. V. 89. № 8.
P. 33−38. DOI: https://doi.org/10.18127/j00338486-202508-04 (In Russian)

References
  1. Antohina Ju.A., Baburov S.V., Bestugin A.R., Perelomov V.N., Sauta O.I. Razvitie navigacionnyh tehnologij dlja povyshenija bezopasnosti poletov. Monografija. Pod red. Ju.G. Shatrakova. SPb: GUAP. 2016. 298 s. (in Russian).
  2. Sauta O.I., Vinogradova E.P. Metrologicheskie aspekty postroenija kompleksnoj korreljacionno-jekstremal'noj navigacionnoj sistemy s ispol'zovaniem psevdoradiolokacionnyh kart. Sb. statej V Mezhdunar. foruma «Metrologicheskoe obespechenie innovacionnyh tehnologij». Pod red. V.V. Okrepilova. SPb: GUAP. 2023. S. 127-129  (in Russian).
  3. Karpenko V.V., Fedorinov A.Ju., Shahmatova N.D. Obzor sredstv i sposobov korreljacionno-jekstremal'nyh metodov navigacii. Materialy XXV Mezhdunar. nauch. konf. «Volnovaja jelektronika i infokommunikacionnye sistemy» (Sankt-Peterburg, 30 maja – 03 ijunja 2022 g.). T. 2. SPb: Sankt-Peterburgskij gos. un- ajerokosmicheskogo priborostroenija. 2022. S. 127-131 (in Russian).
  4. Dzhandzhgava G.I., Gerasimov G.I., Avgustov L.I. Navigacija i navedenie po prostranstvennym geofizicheskim poljam. Izvestija JuFU. Tehnicheskie nauki. 2013. № 3(140). S. 74-84  (in Russian). 
  5. Sauta O.I., Vinogradova E.P., Zhmurin A.V., Savel'eva I.V. Ocenka koordinat letatel'nogo apparata s ispol'zovaniem modeli rel'efa mestnosti. Sb. statej VII Mezhdunar. foruma «Metrologicheskoe obespechenie innovacionnyh tehnologij». Pod red. V.V. Okrepilova. SPb: GUAP. 2023. S. 258-262 (in Russian).
  6. Sauta O.I., Vinogradova E.P. Model' izmerenij radiovysotomera malyh vysot dlja korreljacionno-jekstremal'noj navigacionnoj sistemy. Uspehi sovremennoj radiojelektroniki. 2023. T. 77. № 8. S. 84-90. DOI: https://doi.org/10.18127/j20700784-202308-11 (in Russian).
  7. Belinskij A.V., Nogtev A.A. Rezul'taty jeksperimental'nyh issledovanij navigacionnoj sistemy po poverhnostnym geofizicheskim poljam pri dvizhenii ee po krivolinejnym traektorijam. Radiolokacija: Teorija i praktika. M.: OOO Izd-vo «Juniti-Dana». 2023. S. 316-332 (in Russian).
  8. Baburov V.I., Ponomarenko B.V. Principy integrirovannoj bortovoj avioniki. SPb: Izd-vo «Agentstvo «RDK-Print». 2005 (in Russian).
  9. Svidetel'stvo o registracii programmy dlja JeVM №2022683956, 28.10.2024. Programma formirovanija zony pokrytija cifrovoj karty vysot matematicheskoj modeli radiovysotomera malyh vysot. Zhmurin A.V., Sauta O.I., Vinogradova E.P. (in Russian).
Date of receipt: 28.05.2025
Approved after review: 10.06.2025
Accepted for publication: 22.07.2025